Nav: Home

A material inspired by a sea worm changes according to the environment

April 28, 2017

The gelatinous jaw of a sea worm, which becomes hard or flexible depending on the environment around it, has inspired researchers at the Massachusetts Institute of Technology to develop a new material that can be applied to soft robotics. Despite having the texture of a gel, this compound is endowed with great mechanical resistance and consistency, and is able to adapt to changing environments.

April 26 2017

Scientists at the Massachusetts Institute of Technology (MIT) have looked at a sea worm called Nereis virens in order to create a changing material, which has the ability to be flexible or rigid at convenience. The jaw of this worm has a texture similar to gelatin, but if the environment varies, the material may adopt the hardness of dentin or human bones.

Chemical engineer Francisco Martín-Martínez, a Spanish researcher at the MIT Laboratory for Atomistic and Molecular Mechanics and co-author of the paper, explained to SINC, "the jaw of Nereis virens is composed of a protein that contains large amounts of histidine, an amino acid that interacts with the ions of the environment and makes it more or less flexible depending on the environment in which it finds itself."

The material, described in a study published in the journal 'ACS Nano', has been developed in collaboration with the US Air Force Research Laboratory (AFRL)."It's a hydrogel made from a synthesized protein, similar to the one that makes up the jaw of this worm and which gives it structural stability and impressive mechanical performance," says Martín-Martínez, who adds: "When we change the ions of the environment and the salt concentration, the material expands or contracts."

The team found that at the molecular level, the structure of protein material is strengthened when the environment contains zinc ions and certain pH indexes. The Zinc ions create chemical bonds with the structure of the compound. These bonds are reversible, and can form or break at convenience, making the material more dynamic and flexible.

In addition, the researchers at MIT have created a model which is capable of predicting how the substance operates and have conducted a theoretical study that explains the molecular mechanism responsible for that behaviour. In this way, the researchers have been able to simulate, using supercomputers, how the compound behaves, in order to improve it and to design its molecular structure before taking it to the laboratory. As the AFRL is involved in its development, "the details of the synthesis are not in the public domain," says the co-author.

Robotics and sensors

The new material could have different applications, as Martín-Martínez explains: "Its ability to contract and expand makes it especially suited to creating devices that work as muscles for so-called soft robots, which are made of polymers. It could also be used in the development of sensors that do not need to use external power supplies and control devices for complex electronic systems."

In this project, Martín-Martínez, originally from Granada (Spain), has been in charge of the theoretical study that explains the mechanism by which histidine interacts differently with different ions and causes the material to expand and contract. "Thanks to that, we understand what is happening and we can control it and improve it," he emphasizes.

Martín Martínez, who has been at MIT for three years and has specialized in the design and modelling of materials, believes that most of the problems that are being addressed with technology "have already been solved by nature, almost always in a much better way than we humans can develop, so for us it is a great source of inspiration," he concludes.
-end-
Bibliographic Reference:

Chia-Ching Chou, Francisco J. Martin-Martinez, Zhao Qin, Patrick B. Dennis, Maneesh K. Gupta, Rajesh R. Naik, Markus J. Buehler. "Ion Effect and Metal-Coordinated Cross-Linking for Multiscale Design of Nereis Jaw Inspired Mechanomutable Materials". ACS Nano (2017).

FECYT - Spanish Foundation for Science and Technology

Related Protein Articles:

A direct protein-to-protein binding couples cell survival to cell proliferation
The regulators of apoptosis watch over cell replication and the decision to enter the cell cycle.
A protein that controls inflammation
A study by the research team of Prof. Geert van Loo (VIB-UGent Center for Inflammation Research) has unraveled a critical molecular mechanism behind autoimmune and inflammatory diseases such as rheumatoid arthritis, Crohn's disease, and psoriasis.
Resurrecting ancient protein partners reveals origin of protein regulation
After reconstructing the ancient forms of two cellular proteins, scientists discovered the earliest known instance of a complex form of protein regulation.
Sensing protein wellbeing
The folding state of the proteins in live cells often reflect the cell's general health.
Protein injections in medicine
One day, medical compounds could be introduced into cells with the help of bacterial toxins.
Discovery of an unusual protein
Scientists from Bremen discover an unusual protein playing a significant role in the Earth's nitrogen cycle.
Protein aggregation: Protein assemblies relevant not only for neurodegenerative disease
Amyloid fibrils play a crucial role in neurodegenerative illnesses. Scientists from Heinrich Heine University Düsseldorf (HHU) and Forschungszentrum Jülich have now been able to use cryo-electron microscopy (cryo-EM) to decode the spatial structure of the fibrils that are formed from PI3K SH3 domains - an important model system for research.
Old protein, new tricks: UMD connects a protein to antibody immunity for the first time
How can a protein be a major contributor in the development of birth defects, and also hold the potential to provide symptom relief from autoimmune diseases like lupus?
Infection-fighting protein also senses protein misfolding in non-infected cells
Researchers at the University of Toronto have uncovered an immune mechanism by which host cells combat bacterial infection, and at the same time found that a protein crucial to that process can sense and respond to misfolded proteins in all mammalian cells.
Quorn protein builds muscle better than milk protein
A study from the University of Exeter has found that mycoprotein, the protein-rich food source that is unique to Quorn products, stimulates post-exercise muscle building to a greater extent than milk protein.
More Protein News and Protein Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.