Nav: Home

Thin layers of water hold promise for the energy storage of the future

April 28, 2017

Researchers at North Carolina State University have found that a material which incorporates atomically thin layers of water is able to store and deliver energy much more quickly than the same material that doesn't include the water layers. The finding raises some interesting questions about the behavior of liquids when confined at this scale and holds promise for shaping future energy-storage technologies.

"This is a proof of concept, but the idea of using water or other solvents to 'tune' the transport of ions in a layered material is very exciting," says Veronica Augustyn, an assistant professor of materials science and engineering at NC State and corresponding author of a paper describing the work. "The fundamental idea is that this could allow an increased amount of energy to be stored per unit of volume, faster diffusion of ions through the material, and faster charge transfer.

"Again, this is only a first step, but this line of investigation could ultimately lead to things like thinner batteries, faster storage for renewable-based power grids, or faster acceleration in electric vehicles," Augustyn says.

"The goal for many energy-storage researchers is to create technologies that have the high energy density of batteries and the high power of capacitors," says James Mitchell, a Ph.D. student at NC State and lead author of the paper. "Pseudocapacitors like the one we discuss in the paper may allow us to develop technologies that bridge that gap."

For this work, the researchers compared two materials: a crystalline tungsten oxide and a layered, crystalline tungsten oxide hydrate - which consists of crystalline tungsten oxide layers separated by atomically thin layers of water.

When charging the two materials for 10 minutes, the researchers found that the regular tungsten oxide stored more energy than the hydrate. But when the charging period was only 12 seconds, the hydrate stored more energy than the regular material. One thing that's intriguing, the researchers say, is that the hydrate stored energy more efficiently - wasting less energy as heat.

"Incorporating these solvent layers could be a new strategy for high-powered energy-storage devices that make use of layered materials," Augustyn says. "We think the water layer acts as a pathway that facilitates the transfer of ions through the material.

"We are now moving forward with National Science Foundation-funded work on how to fine-tune this so-called 'interlayer,' which will hopefully advance our understanding of these materials and get us closer to next-generation energy-storage devices."
-end-
The paper, "Transition from Battery to Pseudocapacitor Behavior via Structural Water in Tungsten Oxide," is published in the journal Chemistry of Materials. The paper was co-authored by William Lo, a Ph.D. student at NC State; Arda Genc of Thermo Fisher Scientific; and James LeBeau, an associate professor of materials science and engineering at NC State.

North Carolina State University

Related Water Articles:

Water, water, nowhere
Researchers at the University of Pittsburgh's Swanson School of Engineering have found that the unusual properties of graphane -- a two-dimensional polymer of carbon and hydrogen -- could form a type of anhydrous 'bucket brigade' that transports protons without the need for water, potentially leading to the development of more efficient hydrogen fuel cells for vehicles and other energy systems.
Advantage: Water
When water comes in for a landing on the common catalyst titanium oxide, it splits into hydroxyls just under half the time.
What's really in the water
Through a five-year, $500,000 CAREEER Award from the National Science Foundation, a civil and environmental engineering research group at the University of Pittsburgh's Swanson School of Engineering will be developing new DNA sequencing methods to directly measure viral loads in water and better indicate potential threats to human health.
Jumping water striders know how to avoid breaking of the water surface
When escaping from attacking predators, different water strider species adjust their jump performance to their mass and morphology in order to jump off the water as fast and soon as possible without breaking of the water surface.
Water, water -- the two types of liquid water
There are two types of liquid water, according to research carried out by an international scientific collaboration.
Just add water? New MRI technique shows what drinking water does to your appetite, stomach and brain
Stomach MRI images combined with functional fMRI of the brain activity have provided scientists new insight into how the brain listens to the stomach during eating.
UM researchers found shallow-water corals are not related to their deep-water counterparts
A new study led by scientists at the University of Miami Rosenstiel School of Marine and Atmospheric Science found that shallow-reef corals are more closely related to their shallow-water counterparts over a thousand miles away than they are to deep-water corals on the same reef.
Saline water better than soap and water for cleaning wounds, researchers find
Researchers found that very low water pressure was an acceptable, low-cost alternative for washing out open fractures, and that the reoperation rate was higher in the group that used soap.
UTA research predicting lake levels, moving water to yield better data for water providers
A University of Texas at Arlington environmental engineer is creating an integrated decision support tool for optimal operation of water supply systems that will allow water providers to make better decisions about when to turn on pumps to transfer water from one reservoir system to another and when to release water downstream from the reservoirs.
Surfing water molecules could hold the key to fast and controllable water transport
Scientists at UCL have identified a new and potentially faster way of moving molecules across the surfaces of certain materials.

Related Water Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Setbacks
Failure can feel lonely and final. But can we learn from failure, even reframe it, to feel more like a temporary setback? This hour, TED speakers on changing a crushing defeat into a stepping stone. Guests include entrepreneur Leticia Gasca, psychology professor Alison Ledgerwood, astronomer Phil Plait, former professional athlete Charly Haversat, and UPS training manager Jon Bowers.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".