Nav: Home

New organic lasers one step closer to reality

April 28, 2017

New research could make lasers emitting a wide range of colors more accessible and open new applications from communications and sensing to displays.

Researchers at Kyushu University's Center for Organic Photonics and Electronics Research (OPERA) reported an optically pumped organic thin-film laser that can continuously emit light for 30 ms, which is more than 100 times longer than previous devices.

Unlike the inorganic lasers commonly found in CD drives and laser pointers, organic thin-film lasers use a thin layer of organic molecules as the laser medium, which is the material in the device that actually produces lasing by emitting and amplifying light when excited with an energy source. In this case, the energy source was intense ultraviolet light from an inorganic laser.

A very promising feature of organic thin-film lasers is the possibility to more easily achieve colors that are difficult with inorganic lasers. By designing and synthesizing molecules with new structures, emission of any color of the rainbow is possible.

"People have been studying organic thin-film lasers for a long time, but degradation and loss processes have greatly limited the duration of emission," says Atula S. D. Sandanayaka, lead author of the paper in Science Advances reporting the new results.

The researchers were able to reduce these problems and extend the duration of the lasing by combining three strategies.

To reduce major losses originating from the absorption of laser emission by packets of energy - called triplet excitons - that build up in the organic laser medium during operation, the researchers found an organic laser medium with triplet excitons that absorb a different color of light than that emitted by the laser.

Thermal degradation caused by heating of the lasers during operation was reduced by building the devices on a crystalline silicon wafer and gluing a piece of sapphire glass on top of the organic laser medium with a special polymer.

The silicon and sapphire, which are good heat conductors, help to quickly remove heat from the devices while at the same time encapsulating them.

Finally, through optimization of a frequently used grating structure - called a mixed-order distributed feedback structure - placed under the organic laser medium to provide optical feedback, the input energy needed to operate the lasers was reduced to new lows, further lessening the heating.

"These devices really operate at the extreme, so we have to keep finding new tricks to eliminate any inefficiencies and prevent the devices from burning themselves out," says Professor Chihaya Adachi, director of OPERA.

Using these simple devices in conjunction with inorganic lasers is promising for more easily achieving colors that are difficult to produce using common lasers, with applications in spectroscopy, communications, displays, and sensors.

Development is still ongoing to sustain the emission for even longer durations, but as for what is next?

"Our ultimate goal is realizing organic thin-film lasers that directly use electricity as the energy source, and this is an important step in that direction," says Adachi.
-end-
For more information about this research, see "Towards continuous-wave operation of organic semiconductor lasers," Atula S. D. Sandanayaka et al., Science Advances 3, e1602570 (2017). DOI: 10.1126/sciadv.1602570

This research was performed as a part of the Adachi Molecular Exciton Engineering Project funded by the Exploratory Research for Advanced Technology (ERATO) program of the Japan Science and Technology Agency (JST) under JST ERATO Grant Number JPMJER1305, Japan.

Kyushu University, OPERA

Related Laser Articles:

A laser for penetrating waves
The 'Landau-level laser' is an exciting concept for an unusual radiation source.
Laser light detects tumors
A team of researchers from Jena presents a groundbreaking new method for the rapid, gentle and reliable detection of tumors with laser light.
The first laser radio transmitter
For the first time, researchers at Harvard School of Engineering have used a laser as a radio transmitter and receiver, paving the way for towards ultra-high-speed Wi-Fi and new types of hybrid electronic-photonic devices.
The random anti-laser
Scientists at TU Wien have found a way to build the 'opposite' of a laser -- a device that absorbs a specific light wave perfectly.
Laser 'drill' sets a new world record in laser-driven electron acceleration
Combining a first laser pulse to heat up and 'drill' through a plasma, and another to accelerate electrons to incredibly high energies in just tens of centimeters, scientists have nearly doubled the previous record for laser-driven particle acceleration at Berkeley Lab's BELLA Center.
Laser physics: Transformation through light
Laser physicists have taken snapshots of how C60 carbon molecules react to extremely short pulses of intense infrared light.
Laser-induced graphene gets tough, with help
Laser-induced graphene created at Rice University combines with many materials to make tough, conductive composites for wearable electronics, anti-icing, antimicrobial applications, sensors and water treatment.
How molecules teeter in a laser field
When molecules interact with the oscillating field of a laser, an instantaneous, time-dependent dipole is induced.
Laser blasting antimatter into existence
Antimatter is an exotic material that vaporizes when it contacts regular matter.
New laser advances
Lasers are poised to take another step forward: Researchers at Case Western Reserve University, in collaboration with partners around the world, have been able to control the direction of a laser's output beam by applying external voltage.
More Laser News and Laser Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.