Nav: Home

Scientists trace the key factor of tiny onion-like BN to superhard nt-cBN

April 28, 2019

By virtue of the unique onion-like boron nitride (oBN) precursor, nanotwinned cubic boron nitride (nt-cBN) has been successfully synthesized under high temperature and high pressure, and displays remarkable Vickers hardness up to 108 GPa (as hard as natural diamond crystal), fracture toughness to 12.7 MPa m1/2 (3-4 times of commercial single-crystal cBN), and oxidization temperature to ~1,294°C (~200°C higher than single-crystal cBN). With the same procedure, nanotwinned diamond (nt-diamond) with unprecedented hardness--two times higher than that of single crystal diamond--has also been synthesized via compressing onion carbon. The key to synthesis of nt-cBN and nt-diamond lies in the unique nanostructure of onion-like precursor. However, there is a lack of deep understanding about the effects of size and microstructure of onion-like precursors on the synthesis and properties of the emergent, technologically important nt-cBN/nt-diamond materials.

Recently, Prof. Zhisheng Zhao's research group from Yanshan University, China traced the effects of size and microstructure of onion-like precursors on the synthesis and properties of the emergent, technologically important nt-cBN/nt-diamond materials and revealed that the size change of onion-like precursor results in the distinct microstructures, leading to significant alteration of microstructure and performance in the produced cBN nanopolycrystalline blocks. The study was addressed in SCIENCE CHINA Materials (DOI: 10.1007/s40843-019-9409-1).

Prof. Zhisheng Zhao stated: "The microstructures of high-pressure quenched materials are highly dependent on the initial precursors, pressure, and temperature conditions as well as the compression history, which are determined by both kinetics and thermodynamics factors. So, the size effect of precursor is important, e.g., TiO2 anatase nanocrystals would exhibit strong size-dependent phase selectivity at high pressure. This effect seems straightforward but the intrinsic mechanisms are distinct for different material systems."

They systematically studied the influence of nanoparticle size of precursor on mechanical properties of final products. The onion-like BN (oBN) precursors with different nanoparticle sizes were prepared by centrifugal screening, and then subjected to pressure at appropriate synthesis condition to obtain nanopolycrystalline cBN. Accompanied by the size decrease of precursor from ~320 to 90 nm, the Vickers hardness of nanostructured products improved from 61 to 108 GPa. The experimental data indicated that large oBN nanoparticles possessed more flattened, orderly and graphite-like shell layers, in sharp contrast to the highly wrinkled and imperfect layers in small-diameter nanoparticles, thus resulting in the apparent reduction of ultrafine-twin substructure in synthetic products. Only the small oBN precursors with highly defective and curved layers can produce more complete nt-cBN with ubiquitous ultrafine subtwins in nanograins. The current investigation reveals that the size change of oBN precursors results in the microstructure difference of precursors, which is unusual in nanomaterials. Then, the use of this kind of distinct precursors leads to significant change in microstructure and performance of the produced nanopolycrystalline cBN bulk materials. The mechanical properties of nt-cBN are expected to be further improved by using finer oBN precursors through developing appropriate separation and screening technologies.

"Theoretically, the hardness of nt-cBN with entire ultrafine-twin microstructure can reach as high as 200 GPa, i.e., twice the hardness of natural diamond crystal, if the twin thickness is reduced to 2 nm." says Prof. Zhisheng Zhao. "Our findings demonstrated the fundamental condition of precursor to synthesize the high-performance nt-cBN/nt-diamond materials and presented the feasible route to obtain better nt-cBN/nt-diamond through further reduction of the size of onion-like precursors."
This research was funded by the National Natural Science Foundation of China (Grant Nos. 51472213, 51332005, 51572235, 51722209, and 51525205), the National Key R&D Program of China, 100 Talents Plan of Hebei Province (Grants No. E2016100013), the Natural Science Foundation for Distinguished Young Scholars of Hebei Province of China (Grants No. E2018203349), the Key R&D Program of Hebei Province of China (Grant No. 17211110D), and China Postdoctoral Science Foundation (Grant No. 2017M620097).See the article: Kun Luo, Yang Zhang, Dongli Yu, Baozhong Li, Wentao Hu, Yong Liu, Yufei Gao, Bin Wen, Anmin Nie, Zhisheng Zhao, Bo Xu, Xiang-Feng Zhou, Yongjun Tian and Julong He, "Small onion-like BN leads to ultrafine-twinned cubic BN", Science China Materials. doi: 10.1007/s40843-019-9409-1

Science China Press

Related Boron Nitride Articles:

Novel approach to enhance performance of graphitic carbon nitride
In a report published in NANO, scientists from China underline the importance of defect engineering to promote catalytic performance by providing a simple and efficient way for modifying and optimizing metal-free semiconductor photocatalyst graphitic carbon nitride (g-C3N4) to solve the dual problems of environmental pollution and lack of fossil resources.
Room-temperature bonded interface improves cooling of gallium nitride devices
A room-temperature bonding technique for integrating wide bandgap materials such as gallium nitride (GaN) with thermally-conducting materials such as diamond could boost the cooling effect on GaN devices and facilitate better performance through higher power levels, longer device lifetime, improved reliability and reduced manufacturing costs.
An ultimate one-dimensional electronic channel in hexagonal boron nitride
IBS scientists have reported that stacking of ultrathin sheets of hBN in a particular way creates a conducting boundary with zero bandgap.
Retina-inspired carbon nitride-based photonic synapses for selective detection of UV light
Researchers at Seoul National University and Inha University in South Korea developed photo-sensitive artificial nerves that emulated functions of a retina by using 2-dimensional carbon nitride (C3N4) nanodot materials.
How to keep boron inside cells during radiotherapy: a novel approach to cancer treatment
Boron neutron capture therapy (BNCT) is a technique in which p-boronophenylalanine (BPA) is transferred to cancer cells, and the boron in it undergoes nuclear fission reaction upon irradiation of thermal neutrons, releasing high energy particles that kill the cells.
Chemists allow boron atoms to migrate
Organic molecules with atoms of the semi-metal boron are important building blocks for synthesis products to produce drugs and agricultural chemicals.
Isotopically enriched cubic boron nitride reveals high thermal conductivity
An international team of physicists, materials scientists, and mechanical engineers has confirmed the high thermal conductivity predicted in isotopically enriched cubic boron nitride, the researchers report in the electronic edition of the journal Science. c-BN is particularly challenging to make and it's difficult to measure its thermal conductivity accurately when the value is high.
'Superdiamond' carbon-boron cages can trap and tap into different properties
A new class of 'superdiamond' carbon-based materials has tunable mechanical and electronic properties while retaining robust, diamond-liked bonds.
Breakthrough made in detecting carbon impurities in gallium nitride crystals via light
Carbon impurity has long hindered efficiency in nitride-based electronic and optical devices.
Bacterial arsenic efflux genes enabled plants to transport boron efficiently
- Nodulin26-like-intrinsic-proteins (NIPs) are essential for the transport of silicon and boron in plants.
More Boron Nitride News and Boron Nitride Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

One of the most consistent questions we get at the show is from parents who want to know which episodes are kid-friendly and which aren't. So today, we're releasing a separate feed, Radiolab for Kids. To kick it off, we're rerunning an all-time favorite episode: Space. In the 60's, space exploration was an American obsession. This hour, we chart the path from romance to increasing cynicism. We begin with Ann Druyan, widow of Carl Sagan, with a story about the Voyager expedition, true love, and a golden record that travels through space. And astrophysicist Neil de Grasse Tyson explains the Coepernican Principle, and just how insignificant we are. Support Radiolab today at