Nav: Home

Stretchable interlaced-nanowire film for ultraviolet photodetectors with high response speed

April 28, 2019

Stretchable electronics, as a kind of "soft" electronic devices which can be stretched, deformed and wrapped onto nonplanar curved surfaces, have attracted tremendous attraction due to their potential applications in wearable electronics, implantable biomedical devices, and artificial electronic skin. So far, many types of stretchable electronic devices have been developed including stretchable transistors, light-emitting diodes (LEDs), supercapacitors, photodetectors and sensors. Ultraviolet (UV) photodetectors have wide applications in crime investigation, biological analysis, fire monitoring, and UV irradiation detection. Stretchable UV photodetectors can be applied in much wider fields owing to their fascinating features of being stretchable, portable, implantable and wearable.

Metal oxides with wide bandgap, abundant reserves, large specific surface area, high aspect ratio and excellent stability, have been extensively studied as the active materials for high-performance UV photodetectors, especially the metal oxides nanowires (NWs) for the much higher photoresponse compared with their bulk or thin-film counterparts. However, due to the presence of a large number of surface defects related to trapping centers, most of the reported UV photodetectors based on pure binary metal oxide NWs, stretchable or not, usually display a very low response speed, which greatly limits their practical applications.

Recently, one research group from the Institute of Semiconductors, Chinese Academy of Sciences, presented an interesting SnO2-CdS NW interlaced structure to fabricate stretchable UV photodetectors with high response speed in Science China Materials (DOI: 10.1007/s40843-019-9416-7).

Systematic investigations reveal that the interlaced-nanowire based photodetectors have lower dark current and much higher response speed (more than 100 times) compared with pure SnO2 nanowire based photodetectors. The relevant carrier generation and transport mechanism were also discussed. In addition, due to the formation of waved wrinkles on the surface of the NWs/PDMS layer during the prestretching cycles, the SnO2-CdS interlaced NW photodetectors display excellent electrical stability and stretching cyclability within 50% strain, without obvious performance degradation even after 150 stretching cycles. As a simple and effective strategy to fabricate stretchable UV photodetectors with high response speed, the interlaced nanowire structure can also be applied to other NW pairs, like ZnO-CdS interlaced-NWs.

Prof. Guozhen Shen said: "Our method provides a versatile way to fabricate high speed ultraviolet photodetectors with interlaced metal oxide nanowires-CdS nanowires, which is potential in future stretchable and wearable optoelectronic devices."
This research was funded by the National Natural Science Foundation of China (61625404, 61888102 and 61574132), and the Key Research Program of Frontier Sciences, CAS (QYZDY-SSWJWC004).

See the article: Ludong Li, Zheng Lou, Haoran Chen, Ruilong Shi and Guozhen Shen, "Stretchable SnO2-CdS interlaced-nanowire film ultraviolet photodetectors", Science China Materials. doi: 10.1007/s40843-019-9416-7

Science China Press

Related Photodetectors Articles:

Defects enable RoHS-compliant, high-performance infrared photodetectors
A study led by ICFO researchers reports on a highly sensitive CMOS compatible broadband photodetector by tailoring material defects.
New method improves infrared imaging performance
By successfully suppressing spectral cross-talk in dual-band photodetectors, Professor Manijeh Razeghi has opened the door to a new generation of infrared imaging devices with applications in medicine as well as defense and security.
Innovative technique could pave way for new generation of flexible electronic components
Researchers at the University of Exeter have developed an innovative technique that could help create the next generation of everyday flexible electronics.
Perovskites -- materials of the future in optical communication
Researchers at the universities in Linköping and Shenzhen have shown how an inorganic perovskite can be made into a cheap and efficient photodetector that transfers both text and music.
A trick of the light
Argonne researchers are using nanoparticles to make photodetectors better able to handle the ultraviolet radiation produced in high-energy physics experiments.
SUTD researchers resolve a major mystery in 2D material electronics
SUTD researchers have discovered a one-size-fits-all master equation that shall pave the way towards better design of 2D material electronics.
Research brief: Researchers 3D print prototype for 'bionic eye'
A team of researchers at the University of Minnesota have, for the first time, fully 3D printed an array of light receptors on a hemispherical surface.
Nano-imaging of intersubband transitions in few-layer 2-D materials
A study in Nature Nanotechnology reports on the first observation of intersubband transitions in 2-D materials via scattering scanning near-field optical microscopy.
Fast visible-UV light nanobelt photodetector
Here, we report a fast-response CdSCdSxTe1-x-CdTe core-shell nanobelt photodetector with a rise time of 11 μs, which is the fastest among CdS based photodetectors reported previously.
Scientists create a UV detector based on nanocrystals synthesized by using ion implantation
Scientists at the Lobachevsky University have been working for several years to develop solar-blind photodetectors operating in the UV spectral band.

Related Photodetectors Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#529 Do You Really Want to Find Out Who's Your Daddy?
At least some of you by now have probably spit into a tube and mailed it off to find out who your closest relatives are, where you might be from, and what terrible diseases might await you. But what exactly did you find out? And what did you give away? In this live panel at Awesome Con we bring in science writer Tina Saey to talk about all her DNA testing, and bioethicist Debra Mathews, to determine whether Tina should have done it at all. Related links: What FamilyTreeDNA sharing genetic data with police means for you Crime solvers embraced...