Nav: Home

Researchers discover new charge transfer and separation process

April 28, 2019

Charge transfer and separation is a fundamental process in the energy conversion that powers life on earth. Besides being used in solar cells and photocatalyst, this process is even in photosynthesis as it enables energy conversion by harvesting light and then transferring and converting into chemical energy.

However, deeper understanding of charge transfer and separation at a molecular level continues to be a challenge as this process is very quick - light absorption induced charge transfer and separation takes place over a few femtoseconds to a few picoseconds.

An international team of researchers from the Singapore University of Technology and Design (SUTD), Chinese Academy of Science, Pohang University of Science and Technology and Vanderbilt University, overcame this challenge by using fluorescence in their model systems and studying the change in fluorescence output - intensity, lifetime and wavelength, etc - and discovered a new charge transfer and separation process, Twisted Intramolecular Charge Shuttle (TICS). In TICS molecules, the charge donor and acceptor fragments dynamically switch roles after absorbing light and experiencing a structural twisting, thus exhibit a 'charge shuttle' phenomenon.

TICS' unique bidirectional, role switching process differentiates TICS from a similar process' unidirectional charge transfer mechanism named the Twisted Intramolecular Charge Transfer (TICT). While TICT has facilitated the development of many functional materials and devices such as bright and photostable fluorophores, dark quenchers, viscosity sensors and polarity sensors, TICS paves a new avenue for chemists to construct unique and useful fluorescent probes in a wide range of chemical families of fluorophores.

For instance, the research team constructed TICS fluorescent probes which can be used to detect glutathione, an antioxidant found in plants and animals that is essential in removing many toxic chemicals in biological cells. Similarly, another type of specifically constructed TICS based probe would be able to detect phosgene, a colourless and highly toxic gas that was used as a chemical weapon agent during World War I, which could potentially be used in terrorist attacks.

SUTD's Assistant Professor Liu Xiaogang explained how the research team developed TICS based glutathione fluorescent probes and their efforts to transform the dye chemistry from trial-and-error into molecular engineering.

"Research in this area of study has often been based on trial-and-error. At SUTD, where design is a key component in our research strategy, we made sure to take on a design-centric approach in our research process. We first analysed chemical big data and spotted a pattern between molecular structures and fluorescent properties. After understanding this TICS process, we then designed a probe to prove this concept," said Assistant Professor Liu.
-end-
The paper, entitled 'A Photoexcitation Induced Twisted Intramolecular Charge Shuttle (TICS)', has been published in Angewandte Chemie International Edition, a leading journal in the area of general chemistry.

Singapore University of Technology and Design

Related Research Articles:

More Research News and Research Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Space
One of the most consistent questions we get at the show is from parents who want to know which episodes are kid-friendly and which aren't. So today, we're releasing a separate feed, Radiolab for Kids. To kick it off, we're rerunning an all-time favorite episode: Space. In the 60's, space exploration was an American obsession. This hour, we chart the path from romance to increasing cynicism. We begin with Ann Druyan, widow of Carl Sagan, with a story about the Voyager expedition, true love, and a golden record that travels through space. And astrophysicist Neil de Grasse Tyson explains the Coepernican Principle, and just how insignificant we are. Support Radiolab today at Radiolab.org/donate.