A great new way to paint 3D-printed objects

April 28, 2020

Rutgers engineers have created a highly effective way to paint complex 3D-printed objects, such as lightweight frames for aircraft and biomedical stents, that could save manufacturers time and money and provide new opportunities to create "smart skins" for printed parts.

The findings are published in the journal .

Conventional sprays and brushes can't reach all nooks and crannies in complex 3D-printed objects, but the new technique coats any exposed surface and fosters rapid prototyping.

"Our technique is a more efficient way to coat not only conventional objects, but even hydrogel soft robots, and our coatings are robust enough to survive complete immersion in water and repeated swelling and de-swelling by humidity," said senior author

The engineers discovered new capabilities of a technology that creates a fine spray of droplets by applying a voltage to fluid flowing through a nozzle. This technique (electrospray deposition) has been used mainly for analytical chemistry. But in recent decades, it has also been used in lab-scale demonstrations of coatings that deliver vaccines, light-absorbing layers of solar cells and fluorescent quantum dots (tiny particles) for LED displays.

Using their approach, Rutgers engineers are building an accessory for 3D printers that will, for the first time, allow automated coating of 3D-printed parts with functional, protective or aesthetic layers of paint. Their technique features much thinner and better-targeted paint application, using significantly fewer materials than traditional methods. That means engineers can use cutting-edge materials, such as nanoparticles and bioactive ingredients, that would otherwise be too costly in paints, according to Singer.

Next steps include creating surfaces that can change their properties or trigger chemical reactions to create paints that can sense their environment and report stimuli to onboard electronics. The engineers hope to commercialize their technique and create a new paradigm of rapid coating immediately after printing that complements 3D printing.
Rutgers co-lead authors are Dylan A. Kovacevich, a master's degree student, and Lin Lei, a doctoral student in Singer's lab. Other Rutgers co-authors include doctoral student Daehoon Han (currently a postdoc at the University of Minnesota), Christianna Kuznetsova, an undergraduate student and

Rutgers University

Related Aircraft Articles from Brightsurf:

University of South Carolina redefining aircraft production process
The University of South Carolina College of Engineering and Computing will transform the manufacturing and simulation processes used in aircraft production through a $5.7 million NASA grant.

Small altitude changes could cut climate impact of aircraft by up to 59%
Altering the altitudes of less than 2% of flights could reduce contrail-linked climate change by 59%, says a new Imperial study.

Small altitude changes could cut the climate impact of aircraft
Contrails -- the white, fluffy streaks in the sky that form behind planes -- can harm the environment.

New electrodes could increase efficiency of electric vehicles and aircraft
The rise in popularity of electric vehicles and aircraft presents the possibility of moving away from fossil fuels toward a more sustainable future.

Composite metal foam outperforms aluminum for use in aircraft wings
The leading edges of aircraft wings have to meet a very demanding set of characteristics.

Particulate matter from aircraft engines affects airways
In a unique, innovative experiment, researchers under the leadership of the University of Bern have investigated the effect of exhaust particles from aircraft turbine engines on human lung cells.

How to ice-proof the next generation of aircraft
To prevent ice formation on aircraft during flight, current systems utilize the heat generated by burning fuel, but these high-temperature, fuel-dependent systems cannot be used on the proposed all-electric, temperature-sensitive materials of next-generation aircraft.

Putting hybrid-electric aircraft performance to the test
Although hybrid-electric cars are becoming commonplace, similar technology applied to airplanes comes with significantly different challenges.

Aircraft microbiome much like that of homes and offices, study finds
What does flying in a commercial airliner have in common with working at the office or relaxing at home?

Sequential model chips away at mysteries of aircraft
Ice accumulation on aircraft wings is a common contributing factor to airplane accidents.

Read More: Aircraft News and Aircraft Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.