Key progress on the MRI compatible DBS electrodes and simultaneous DBS-fMRI

April 28, 2020

Simultaneous deep brain stimulation (DBS) and functional magnetic resonance imaging (fMRI) is critical for understanding the functional neural networks and the therapeutic effects and mechanisms of DBS therapies. Conventional DBS electrodes typically lead to severe distortion of the surrounding magnetic field, which creates large artifacts in MR images and thus impedes the functional investigation of DBS-fMRI.

Recently, collaboration between Dr. Duan Xiaojie's group (Department of Biomedical Engineering, College of Engineering, Peking University) and Dr. Liang Zhifeng's group (Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, CAS) has led to a novel MRI compatible, graphene fiber DBS electrode. Using a Parkinsonian rat model, this novel electrode achieved full activation pattern mapping by simultaneous deep brain stimulation and fMRI, and revealed close relationship between fMRI activation and DBS therapeutic improvement.

This novel graphene fiber DBS electrode has 70 times more charge injection capacity than electrodes made of platinum-iridium (PtIr), which is the material most commonly used in clinical DBS, and exhibits much smaller artifacts in both T2 weighted structural images and T2* weighted functional echo planar images (Figure 1) at a high field of 9.4-Tesla. In addition, this electrode shows high stability under continuous overcurrent pulsing. Using this graphene fiber DBS electrode, subthalamic nucleus (STN) was stimulated as the DBS target in a Parkinsonian rat model, which significantly improved rats' motor ability and reduced the motor deficit.

The above unique advantage of this novel DBS electrode enabled full activation pattern mapping using simultaneous DBS and fMRI, including the DBS target (STN) itself. The fMRI activation amplitudes of several key brain regions were found to be closely associated with mobile speed improvement, including STN, motor cortex, internal globus pallidus (GPi), external globus pallidus (GPe) and caudate putamen (CPu) (Figure 2). The above result suggests that the therapeutic effect of STN DBS in Parkinson's disease may be achieved by both orthodromic and antidromic effect of electrical stimulation.

This work was published by Nature Communications on April 14, 2020 (DOI: 10.1038/s41467-020-15570-9). Graduate students Zhao Siyuan and Li Gen from Peking University were co-first authors, and Dr. Duan Xiaojie and Dr. Liang Zhifeng were co-corresponding authors. This work was supported by National Natural Science Foundation of China, the National Basic Research Program of China.

Peking University

Related Engineering Articles from Brightsurf:

Re-engineering antibodies for COVID-19
Catholic University of America researcher uses 'in silico' analysis to fast-track passive immunity

Next frontier in bacterial engineering
A new technique overcomes a serious hurdle in the field of bacterial design and engineering.

COVID-19 and the role of tissue engineering
Tissue engineering has a unique set of tools and technologies for developing preventive strategies, diagnostics, and treatments that can play an important role during the ongoing COVID-19 pandemic.

Engineering the meniscus
Damage to the meniscus is common, but there remains an unmet need for improved restorative therapies that can overcome poor healing in the avascular regions.

Artificially engineering the intestine
Short bowel syndrome is a debilitating condition with few treatment options, and these treatments have limited efficacy.

Reverse engineering the fireworks of life
An interdisciplinary team of Princeton researchers has successfully reverse engineered the components and sequence of events that lead to microtubule branching.

New method for engineering metabolic pathways
Two approaches provide a faster way to create enzymes and analyze their reactions, leading to the design of more complex molecules.

Engineering for high-speed devices
A research team from the University of Delaware has developed cutting-edge technology for photonics devices that could enable faster communications between phones and computers.

Breakthrough in blood vessel engineering
Growing functional blood vessel networks is no easy task. Previously, other groups have made networks that span millimeters in size.

Next-gen batteries possible with new engineering approach
Dramatically longer-lasting, faster-charging and safer lithium metal batteries may be possible, according to Penn State research, recently published in Nature Energy.

Read More: Engineering News and Engineering Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to