Nav: Home

Shrinking instead of growing: how shrews survive the winter

April 28, 2020

Last year, about 30 common shrews from the area around Möggingen had an unusual adventure. Researchers at the Max Planck Institute for Animal Behavior in Radolfzell captured the animals, measured their skulls, and examined their metabolism. The animals were then released back into the wild. This all led to an exciting discovery. The measurements revealed that the animals' metabolism is equally active in summer and winter. Animals that do not hibernate usually require more energy in winter in order to maintain a constant body temperature. This gives shrews a survival advantage that has likely enabled them to colonize colder regions.

Common shrews have one of the highest metabolic rates among mammals. They must therefore consume a considerable amount of energy for their relatively low body weight. Because their fat reserves are quickly used up, they often starve to death after only a few hours without food. Nevertheless, forest shrews and their close relatives are highly evolutionarily successful and quite widespread, especially in the northern hemisphere.

Dina Dechmann, a scientist at the Max Planck Institute of Animal Behavior in Radolfzell, hopes to find out how animals deal with large fluctuations in food supply and other resources. For example, how do tiny shrews manage to overcome the cold and food shortages in winter? But studies with wild shrews consume a great deal of time and resources. Because of their strong territorial behaviour, the animals must be kept in large individual enclosures throughout the experiments.

Shrink in autumn, grow in spring

Unlike many other animals, common shrews neither store food nor hibernate. Instead, they adapt in a completely different way: After their birth in summer, they grow rapidly to a maximum size. But in autumn, they begin to shrink and lose approximately ten to 20 percent of their body weight. Not only fat and muscle mass is reduced; internal organs such as the brain also shrink. From February onwards, the shrews begin to grow again until they reach their maximum size in spring. However, some tissues, such as the brain, only partially grow again. This seasonal change in body size, which is extremely rare in the animal kingdom, is also known as Dehnel's phenomenon.

However, this strategy seems a bit paradoxical. Despite thick winter fur, one would expect the shrews to cool down more easily in winter temperatures because smaller animals have an unfavourable body surface to body mass ratio. Because of this, they lose more heat to the cold ambient air. In fact, the relationship between body weight, temperature, and metabolic rate is a fundamental law of ecology.

Constant energy consumption

In order to find out how the seasonal change in body size affects the energy consumption of shrews, Dechmann and her team measured the animals' metabolism at the respective outdoor temperatures of the different seasons. The results were surprising. "The common shrew somehow manages to cheat evolution", says Dechmann. Despite their reduced body size, shrews do not consume more energy per gram of body weight in winter - even though temperatures can fluctuate by more than 30 degrees. This is not because they are less active in winter. The video recordings of the researcher show that although the shrews rest a little more, this can only explain a small part of the differences in energy requirements.

The scientists suspect that shrews constantly produce excessive amounts of heat because of their high metabolic activity and therefore do not need to increase their metabolic rate in winter. A smaller body size simply means that they must consume less energy overall. This is advantageous considering the scarce food supply in winter. "How this works exactly is still unclear. There are still some open questions we would like to investigate in further experiments", says Dechmann. The special metabolism of the forest shrews might even shed light onto research in human diseases in which metabolism plays a role.
-end-
Original publication

Paul J. Schaeffer, M. Teague O'Mara, Japhet Breiholz, Lara Keicher, Jávier Lazaro, Marion Muturi, Dina K.N. Dechmann
Metabolic rate in common shrews is unaffected by seasonal temperature, leading to reduction of energetic costs through size reduction.
Royal Society Open Science; 22 April, 2020

Max-Planck-Gesellschaft

Related Metabolism Articles:

Cannabinoids decrease the metabolism of glucose in the brain
What happens when THC acts on the glial cells named astrocytes ?
New role of arginine metabolism in plant morphogenesis identified
A research team led by ExCELLS/NIBB found that arginine metabolism has a vital role in regulating gametophore shoot formation in the moss Physcomitrium patens.
Watching changes in plant metabolism -- live
Almost all life on Earth, e.g. our food and health, depend on metabolism in plants.
redHUMAN: Deciphering links between genes and metabolism
Scientists at EPFL have developed a new method that simplifies the processing of genetic-metabolic data by picking up changes in metabolism, a hallmark of numerous diseases like cancer and Alzheimer's.
Lipid metabolism controls brain development
A lipid metabolism enzyme controls brain stem cell activity and lifelong brain development.
Inhibition of sphingolipid metabolism and neurodegenerative diseases
Disrupting the production of a class of lipids known as sphingolipids in neurons improved symptoms of neurodegeneration and increased survival in a mouse model.
Viruses don't have a metabolism; but some have the building blocks for one
'Giant viruses' are many times larger than typical viruses and have more complex genomes.
New metabolism discovered in bacteria
Microbiologists at Goethe University Frankfurt have discovered how the bacterium Acetobacterium woodii uses hydrogen in a kind of cycle to conserve energy.
Protein controls fat metabolism
A protein in the cell envelope influences the rate of fatty acid uptake in cells.
A new model of metabolism draws from thermodynamics and 'omics'
Scientists at EPFL have developed an algorithm that can model biochemical reactions from metabolism down to RNA synthesis with unprecedented accuracy.
More Metabolism News and Metabolism Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.