How blood cells deform, recover when traveling through tiny channels

April 28, 2020

WASHINGTON, April 28, 2020 -- Laboratory blood tests are often done by forcing samples through small channels. When the channels are very small, as in microfluidic devices, red blood cells (RBCs) are deformed and then relax back to their original shape after exiting the channel. The way the deformation and relaxation occur depends on both the flow characteristics and mechanical properties of the cell's outer membrane.

In this week's issue of the journal Biomicrofluidics, from AIP Publishing, a method to characterize the shape recovery of healthy human RBCs flowing through a microfluidic constricted channel is reported. This investigation revealed a coupling between the cell's mechanical properties and the hydrodynamic properties of the flow. In addition, the method could distinguish between healthy RBCs and those infected by the malaria parasite. This suggests a possible new technique for diagnosing disease.

The microfluidic device consisted of a narrow channel interspersed by a succession of sawtooth-shaped wider areas. A solution of RBCs is pumped through the system by applying pressure from one end. As the cells travel through the channel, they are observed with a microscope. The images are captured with a high-speed camera and sent to a computer for analysis.

When an RBC enters a narrow channel, it takes on a parachutelike shape. When it exits into a wide region, it elongates in the direction of the flow until it meets the next widening and is again stretched by the flow.

At the final exit, two different shape recovery behaviors were observed, depending on the flow speed and viscosity of the medium. At high flow speed and viscosity, the cells get stretched upon their last exit from the channel and then recover their original shapes. At lower speed and viscosity, however, the parachutelike shape is recovered directly upon exiting.

The investigators found that the hydrodynamic conditions at which the transition between these two different recovery behaviors occurs depend on the elastic properties of the RBC.

Co-author Magalie Faivre said, "Although the time necessary for the cells to recover their shape after exiting the channel was shown to depend on the hydrodynamic conditions, we have demonstrated that, at a given stress, this recovery time can be used to differentiate healthy from Plasmodium falciparum-infected RBCs." Plasmodium falciparum is one of the parasites that cause malaria.

The investigators are seeking to expand their study to find a way to detect "signatures" for other types of diseases.

"We are currently evaluating if our approach is able to discriminate the alteration of different structural components of the RBC membrane," said Faivre. "To do so, we are studying RBCs from patients with malaria, sickle cell anemia and hereditary spherocytosis."
-end-
The article, "Dual shape recovery of red blood cells flowing out of a microfluidic constriction," is authored by A. Amirouche, J. Esteves, A. Lavoignat, S. Picot, R. Ferrigno and M. Faivre. The article will appear in Biomicrofluidics on April 28, 2020 (DOI: 10.1063/5.0005198). After that date, it can be accessed at https://aip.scitation.org/doi/10.1063/5.0005198.

ABOUT THE JOURNAL

Biomicrofluidics rapidly disseminates research in fundamental physicochemical mechanisms associated with microfluidic and nanofluidic phenomena. The journal also publishes research in unique microfluidic and nanofluidic techniques for diagnostic, medical, biological, pharmaceutical, environmental, and chemical applications. See https://aip.scitation.org/journal/bmf.

American Institute of Physics

Related Malaria Articles from Brightsurf:

Clocking in with malaria parasites
Discovery of a malaria parasite's internal clock could lead to new treatment strategies.

Breakthrough in malaria research
An international scientific consortium led by the cell biologists Volker Heussler from the University of Bern and Oliver Billker from the UmeƄ University in Sweden has for the first time systematically investigated the genome of the malaria parasite Plasmodium throughout its life cycle in a large-scale experiment.

Scientists close in on malaria vaccine
Scientists have taken another big step forward towards developing a vaccine that's effective against the most severe forms of malaria.

New tool in fight against malaria
Modifying a class of molecules originally developed to treat the skin disease psoriasis could lead to a new malaria drug that is effective against malaria parasites resistant to currently available drugs.

Malaria expert warns of need for malaria drug to treat severe cases in US
The US each year sees more than 1,500 cases of malaria, and currently there is limited access to an intravenously administered (IV) drug needed for the more serious cases.

Monkey malaria breakthrough offers cure for relapsing malaria
A breakthrough in monkey malaria research by two University of Otago scientists could help scientists diagnose and treat a relapsing form of human malaria.

Getting to zero malaria cases in zanzibar
New research led by the Johns Hopkins Center for Communication Programs, Ifakara Health Institute and the Zanzibar Malaria Elimination Program suggests that a better understanding of human behavior at night -- when malaria mosquitoes are biting -- could be key to preventing lingering cases.

Widely used malaria treatment to prevent malaria in pregnant women
A global team of researchers, led by a research team at the Liverpool School of Tropical Medicine (LSTM), are calling for a review of drug-based strategies used to prevent malaria infections in pregnant women, in areas where there is widespread resistance to existing antimalarial medicines.

Protection against Malaria: A matter of balance
A balanced production of pro and anti-inflammatory cytokines at two years of age protects against clinical malaria in early childhood, according to a study led by ISGlobal, an institution supported by ''la Caixa'' Foundation.

The math of malaria
A new mathematical model for malaria shows how competition between parasite strains within a human host reduces the odds of drug resistance developing in a high-transmission setting.

Read More: Malaria News and Malaria Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.