Nav: Home

Wide bandgap semiconductor devices based on silicon carbide may revolutionize electronics

April 28, 2020

WASHINGTON, April 28, 2020 -- Growth of high-quality substrates for microelectronic applications is one of the key elements helping drive society toward a more sustainable green economy. Today, silicon plays a central role within the semiconductor industry for microelectronic and nanoelectronic devices.

Silicon wafers of high purity (99.0% or higher) single-crystalline material can be obtained via a combination of liquid growth methods, such as pulling a seed crystal from the melt and by subsequent epitaxy. The catch is that the former process can't be used for the growth of silicon carbide (SiC), because it lacks a melting phase.

In the journal Applied Physics Reviews, from AIP Publishing, Giuseppe Fisicaro and an international team of researchers, led by Antonio La Magna, describe a theoretical and experimental study of the atomic mechanisms governing extended defect kinetics in cubic SiC (3C-SiC), which has a diamondlike zincblende (ZnS) crystal structure that manifests both stacking and anti-phase instabilities.

"Development of a technological framework for the control of crystalline imperfections within SiC for wide bandgap applications can be a game-changing strategy," said Fisicaro.

The researchers' study pinpoints the atomistic mechanisms responsible for extended defect generation and evolution.

"Anti-phase boundaries -- planar crystallographic defects representing the contact boundary between two crystal regions with switched bonds (C-Si instead of Si-C) -- are a critical source of other extended defects in a plethora of configurations," he said.

Eventual reduction of these anti-phase boundaries "is particularly important to achieve good-quality crystals that can be used in electronic devices and enable viable commercial yields," said Fisicaro.

So they developed an innovative simulation Monte Carlo code based on a superlattice, which is a spatial lattice that contains both the perfect SiC crystal and all crystal imperfections. It helped "shed light on the various mechanisms of defect-defect interactions and their impact on the electronic properties of this material," he said.

Emerging wide bandgap semiconductor devices, such as the ones built with SiC, are significant because they have the potential to revolutionize the power electronics industry. They are capable of faster switching speeds, lower losses and higher blocking voltages, which are superior to those of standard silicon-based devices.

Huge environmental benefits are also involved. "If the world's silicon power devices used within this range with were replaced by 3C-SiC devices, a reduction of 1.2x10^10 kilowatts per year could be obtained," Fisicaro said.

"This corresponds to a reduction of 6 million tons of carbon dioxide emissions," he said.

The researchers concluded that the low cost of the 3C-SiC hetero-epitaxial approach and the scalability of this process to 300-millimeter wafers and beyond make this technology extremely competitive for motor drives of electric or hybrid vehicles, air conditioning systems, refrigerators, and light-emitting diode lighting systems.
-end-
This work is part of the European Union's Horizon 2020 CHALLENGE Program; HORIZON 2020-NMBP-720827).

The article, "Genesis and evolution of extended defects: The role of evolving interface instabilities in cubic SiC," is authored by Giuseppe Fisicaro, Corrado Bongiorno, Ioannis Deretzis, Filippo Giannazzo, Francesco La Via, Fabrizio Roccaforte, Marcin Zielinski, Massimo Zimbone, and Antonino La Magna. It will appear in Applied Physics Reviews, April 28, 2020 (DOI: 10.1063/1.5132300). After that date, it can be accessed at https://aip.scitation.org/doi/10.1063/1.5132300.

ABOUT THE JOURNAL

Applied Physics Reviews features articles on significant and current topics in experimental or theoretical research in applied physics, or in applications of physics to other branches of science and engineering. The journal publishes both original research on pioneering studies of broad interest to the applied physics community, and reviews on established or emerging areas of applied physics. See https://aip.scitation.org/journal/are.

American Institute of Physics

Related Crystal Structure Articles:

The makings of a crystal flipper
Hokkaido University scientists have fabricated a crystal that autonomously flips back and forth while changing its flipping patterns in response to lighting conditions.
Crystal power
Scientists at the US Department of Energy's Argonne National Laboratory have created and tested a single-crystal electrode that promises to yield pivotal discoveries for advanced batteries under development worldwide.
Pressing 'pause' on nature's crystal symmetry
From snowflakes to quartz, nature's crystalline structures form with a reliable, systemic symmetry.
Superhard candy -- scientists cracked the complex crystal structure of molybdenum borides
In their search for new superhard compounds, researchers carried out a prediction of stable molybdenum borides and their crystal structures.
Machine learning technique speeds up crystal structure determination
A computer-based method could make it less labor-intensive to determine the crystal structures of various materials and molecules, including alloys, proteins and pharmaceuticals.
An improved method for protein crystal structure visualization
During crystallization atoms are arranged in a 3D lattice structured in a specific way.
Gazing into crystal balls to advance understanding of crystal formation
Researchers at The University of Tokyo Institute of Industrial Science conducted simulations considering and neglecting hydrodynamic interactions to determine whether or not these interactions cause the large discrepancy observed between experimental and calculated nucleation rates for hard-sphere colloidal systems, which are used to model crystallization.
4D imaging with liquid crystal microlenses
Most images captured by a camera lens are flat and two dimensional.
Solution of the high-resolution crystal structure of stress proteins from Staphylococcus
One of the main factors favoring a microorganism's survival in extreme conditions is preserving ribosomes -- a macromolecular complex comprising RNA and proteins
A laser, a crystal and molecular structures
Researchers have built a new tool to study molecules using a laser, a crystal and light detectors.
More Crystal Structure News and Crystal Structure Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Making Amends
What makes a true apology? What does it mean to make amends for past mistakes? This hour, TED speakers explore how repairing the wrongs of the past is the first step toward healing for the future. Guests include historian and preservationist Brent Leggs, law professor Martha Minow, librarian Dawn Wacek, and playwright V (formerly Eve Ensler).
Now Playing: Science for the People

#566 Is Your Gut Leaking?
This week we're busting the human gut wide open with Dr. Alessio Fasano from the Center for Celiac Research and Treatment at Massachusetts General Hospital. Join host Anika Hazra for our discussion separating fact from fiction on the controversial topic of leaky gut syndrome. We cover everything from what causes a leaky gut to interpreting the results of a gut microbiome test! Related links: Center for Celiac Research and Treatment website and their YouTube channel
Now Playing: Radiolab

The Flag and the Fury
How do you actually make change in the world? For 126 years, Mississippi has had the Confederate battle flag on their state flag, and they were the last state in the nation where that emblem remained "officially" flying.  A few days ago, that flag came down. A few days before that, it coming down would have seemed impossible. We dive into the story behind this de-flagging: a journey involving a clash of histories, designs, families, and even cheerleading. This show is a collaboration with OSM Audio. Kiese Laymon's memoir Heavy is here. And the Hospitality Flag webpage is here.