Nav: Home

Spinal cord gives bio-bots walking rhythm

April 28, 2020

CHAMPAIGN, Ill. -- Miniature biological robots are making greater strides than ever, thanks to the spinal cord directing their steps.

University of Illinois at Urbana-Champaign researchers developed the tiny walking "spinobots," powered by rat muscle and spinal cord tissue on a soft, 3D-printed hydrogel skeleton. While previous generations of biological robots, or bio-bots, could move forward by simple muscle contraction, the integration of the spinal cord gives them a more natural walking rhythm, said study leader Martha Gillette, a professor of cell and developmental biology.

"These are the beginnings of a direction toward interactive biological devices that could have applications for neurocomputing and for restorative medicine," Gillette said.

The researchers published their findings in the journal APL Bioengineering.

To make the spinobots, the researchers first printed the tiny skeleton: two posts for legs and a flexible "backbone," only a few millimeters across. Then, they seeded it with muscle cells, which grew into muscle tissue. Finally, they integrated a segment of lumbar spinal cord from a rat.

"We specifically selected the lumbar spinal cord because previous work has demonstrated that it houses the circuits that control left-right alternation for lower limbs during walking," said graduate student Collin Kaufman, the first author of the paper. "From an engineering perspective, neurons are necessary to drive ever more complex, coordinated muscle movements. The most challenging obstacle for innervation was that nobody had ever cultured an intact rodent spinal cord before."

The researchers had to devise a method not only to extract the intact spinal cord and then culture it, but also to integrate it onto the bio-bot and culture the muscle and nerve tissue together - and do it in a way that the neurons form junctions with the muscle.

The researchers saw spontaneous muscle contractions in the spinobots, signaling that the desired neuro-muscular junctions had formed and the two cell types were communicating. To verify that the spinal cord was functioning as it should to promote walking, the researchers added glutamate, a neurotransmitter that prompts nerves to signal muscle to contract.

The glutamate caused the muscle to contract and the legs to move in a natural walking rhythm. When the glutamate was rinsed away, the spinobots stopped walking.

Next, the researchers plan to further refine the spinobots' movement, making their gaits more natural. The researchers hope this small-scale spinal cord integration is a first step toward creating in vitro models of the peripheral nervous system, which is difficult to study in live patients or animal models.

"The development of an in vitro peripheral nervous system - spinal cord, outgrowths and innervated muscle - could allow researchers to study neurodegenerative diseases such as ALS in real time with greater ease of access to all the impacted components," Kaufman said. "There are also a variety of ways that this technology could be used as a surgical training tool, from acting as a practice dummy made of real biological tissue to actually helping perform the surgery itself. These applications are, for now, in the fairly distant future, but the inclusion of an intact spinal cord circuit is an important step forward."
-end-
The National Science Foundation supported this work through the Emergent Behaviors of Integrated Cellular Systems science and technology center. Gillette also directs the neuroscience program at the U. of I. and is affiliated with the Beckman Institute for Advanced Science and Technology, the Carle Illinois College of Medicine, the Holonyak Micro and Nanotechnology Lab and the departments of bioengineering and molecular and integrative physiology.

Editor's notes: To reach Martha Gillette, call 217-244-1355; email mgillett@illinois.edu. To reach Collin Kaufman, email cdkaufm2@illinois.edu.

The paper "Emergence of functional neuromuscular junctions in an engineered, multicellular spinal cord-muscle bioactuator" is available online. DOI: 10.1063/1.5121440

University of Illinois at Urbana-Champaign, News Bureau

Related Spinal Cord Articles:

Spinal cord gives bio-bots walking rhythm
Miniature biological robots are making greater strides than ever, thanks to the spinal cord directing their steps.
Co-delivery of IL-10 and NT-3 to enhance spinal cord injury repair
Spinal cord injury (SCI) creates a complex microenvironment that is not conducive to repair; growth factors are in short supply, whereas factors that inhibit regeneration are plentiful.
Locomotor engine in the spinal cord revealed
Researchers at Karolinska Institutet in Sweden have revealed a new principle of organization which explains how locomotion is coordinated in vertebrates akin to an engine with three gears.
Neurological signals from the spinal cord surprise scientists
With a study of the network between nerve and muscle cells in turtles, researchers from the University of Copenhagen have gained new insight into the way in which movements are generated and maintained.
An 'EpiPen' for spinal cord injuries
An injection of nanoparticles can prevent the body's immune system from overreacting to trauma, potentially preventing some spinal cord injuries from resulting in paralysis.
From spinal cord injury to recovery
Spinal cord injury disconnects communication between the brain and the spinal cord, disrupting control over part of the body.
Transplanting adult spinal cord tissues: A new strategy of repair spinal cord injury
Spinal cord injury repair is one of the most challenging medical problems, and no effective therapeutic methods has been developed.
Gene medication to help treat spinal cord injuries
The two-gene medication has been proven to recover motor functions in rats.
Spinal cord is 'smarter' than previously thought
New research from Western University has shown that the spinal cord is able to process and control complex functions, like the positioning of your hand in external space.
The lamprey regenerates its spinal cord not just once -- but twice
Marine Biological Laboratory (MBL) scientists report that lampreys can regenerate the spinal cord and recover function after the spinal cord has been severed not just once, but twice in the same location.
More Spinal Cord News and Spinal Cord Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Processing The Pandemic
Between the pandemic and America's reckoning with racism and police brutality, many of us are anxious, angry, and depressed. This hour, TED Fellow and writer Laurel Braitman helps us process it all.
Now Playing: Science for the People

#568 Poker Face Psychology
Anyone who's seen pop culture depictions of poker might think statistics and math is the only way to get ahead. But no, there's psychology too. Author Maria Konnikova took her Ph.D. in psychology to the poker table, and turned out to be good. So good, she went pro in poker, and learned all about her own biases on the way. We're talking about her new book "The Biggest Bluff: How I Learned to Pay Attention, Master Myself, and Win".
Now Playing: Radiolab

Invisible Allies
As scientists have been scrambling to find new and better ways to treat covid-19, they've come across some unexpected allies. Invisible and primordial, these protectors have been with us all along. And they just might help us to better weather this viral storm. To kick things off, we travel through time from a homeless shelter to a military hospital, pondering the pandemic-fighting power of the sun. And then, we dive deep into the periodic table to look at how a simple element might actually be a microbe's biggest foe. This episode was reported by Simon Adler and Molly Webster, and produced by Annie McEwen and Pat Walters. Support Radiolab today at Radiolab.org/donate.