Polymer membranes could benefit from taking a dip

April 28, 2020

A simple pretreatment step enables membranes to be enhanced using atomic layer deposition, a technique that can improve performance and introduce new surface properties.

Many industrial processes rely on thin membranes that can clean water, for example, by filtering out impurities. In recent years, a technique called atomic layer deposition (ALD) has been used to tune these membranes for better performance, but there's a hitch: Many of them are made from materials that aren't compatible with ALD, a process using alternating chemical vapors to create very thin layers on a surface.

A new method developed by a team including researchers from the U.S. Department of Energy's (DOE) Argonne National Laboratory makes ALD possible on nearly any membrane. The researchers discovered a surprisingly simple solution: dipping membranes in tannic acid first. The acid's molecules stick to the membrane's surface, providing nucleation sites -- or points where an ALD coating can take hold and grow.

"There's a whole library of things you can do with ALD. This technique now opens up that library for polymer membranes." -- Seth Darling, director of Argonne's Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center

The ability to use this technique on typically resistant membrane materials enables a variety of potential enhancements that could improve functionality and durability -- or create altogether new properties. The work is detailed in the paper "Polyphenol-Sensitized Atomic Layer Deposition for Membrane Interface Hydrophilization," which was recently published in the journal Advanced Functional Materials.

Many commercial membranes are made from common plastics such as polypropylene and polyethylene, which are inexpensive and relatively sturdy. But when used to treat water, these polymer-based membranes tend to cause problems. Their surfaces are prone to fouling, where contaminants accumulate in their pores and reduce efficacy.

With ALD, a process common in the semiconductor industry, membranes can be altered to resist fouling or take on other desirable properties. Molecules deposited on the surface can weave their way through a membrane's tortuous network of pores to find all the surfaces inside, creating an exceptionally uniform coating.

"ALD, in principle, is great," said Seth Darling, a co-author of the study and director of Argonne's Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center. "The challenge is that most polymers that are used to make membranes are not amenable to coating with ALD."

In the study, tannic acid pretreatment enabled a water-resistant polymer membrane to be coated with titanium dioxide, transforming its surface to become hydrophilic (water-loving) instead. The water-attracting layer creates a protective buffer against fouling.

The AMEWS center, which is funded by DOE's Office of Science, supported the work as part of a broader effort to understand and control what happens at the interface between water and solid materials. Such understanding is key to improving how we process and use water.

In the past, Argonne researchers have exploited the fact that some polymers are inhospitable to ALD by creating a two-faced "Janus" membrane, with a full metal oxide coating on top of the membrane and none on the other side. This latest study is the first time scientists have been able to completely and uniformly sensitize a membrane to ALD using a nondestructive pretreatment.

Argonne is developing methods for scaling up ALD and other interface engineering capabilities so that these methods can be evaluated for large, industrial applications. "We currently use lab-scale reactors for these research studies, but we are building tools for efficient ALD processing of large area substrates. This will allow pilot-scale testing of our ALD materials," said Jeffrey Elam, a senior chemist at Argonne and study co-author.

The new method potentially could work not just with tannic acid but any liquid polyphenol and also with any polymer membrane, which opens up a vast number of possibilities beyond the proof of concept described in the paper. In addition to water-attracting or water-resistant coatings, ALD can be used to create chemically reactive or electrically conductive materials.

"There's a whole library of things you can do with ALD," Darling said. "This technique now opens up that library for polymer membranes."
Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America's scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.

The U.S. Department of Energy's Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit https://energy.gov/science.

DOE/Argonne National Laboratory

Related Polymer Articles from Brightsurf:

Impurities enhance polymer LED efficiencies
New research published in EPJ B reveals that the higher-than-expected efficiency of PLEDs can be reached through interactions between triplet excitons, and impurities embedded in their polymer layers.

Safety of bioabsorbable polymer against durable polymer DES in high-risk PCI patients
A novel study sought to reveal whether drug-eluting stents (DES) coated with bioabsorbable polymer (BP) presented a safety advantage without compromising efficacy compared to durable polymer (DP) formulations.

Polymer membranes could benefit from taking a dip
A new technique developed by a team including researchers from the US Department of Energy (DOE)'s Argonne National Laboratory makes atomic layer deposition possible on nearly any membrane.

New polymer material may help batteries become self-healing, recyclable
Lithium-ion batteries are notorious for developing internal electrical shorts that can ignite a battery's liquid electrolytes, leading to explosions and fires.

Researchers add order to polymer gels
Gel-like materials have a wide range of applications, especially in chemistry and medicine.

Bundlemers (new polymer units) could transform industries
From tires to clothes to shampoo, many ubiquitous products are made with polymers, large chain-like molecules made of smaller sub-units, called monomers, bonded together.

New synthetic polymer degradable under very mild acidic conditions
A new type of degradable synthetic polymer was prepared by Rh-catalyzed three-component polymerization of a bis(diazocarbonyl) compound, bis(1,3-diketone), and tetrahydrofuran.

New polymer tackles PFAS pollution
toxic polyfluorinated alkyl substances (PFAS) pollution -- commonly used in non-stick and protective coatings, lubricants and aviation fire-fighting foams -- can now be removed from the environment thanks to a new low-cost, safe and environmentally friendly polymer.

New polymer films conduct heat instead of trapping it
MIT engineers have flipped the picture of the standard polymer insulator, by fabricating thin polymer films that conduct heat -- an ability normally associated with metals.

Polymer reversibly glows white when stretched
Polymers that change their appearance in response to mechanical forces can warn of damage developing in a material before the stress causes structural failure.

Read More: Polymer News and Polymer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.