Gold beads show previously unseen parts of the eye

April 29, 2006

Rockville, Md. - A new study recently published in Journal of Vision, an online, free access publication of the Association for Research in Vision and Ophthalmology (ARVO), shows that gold beads injected into eye tissue can be used to obtain images of important structures in the orbit that cannot be seen with Magnetic Resonance Imaging (MRI) or other imaging methods.

Researchers from the Smith-Kettlewell Eye Research Institute in San Francisco, Calif., injected tiny gold beads into various areas in the eye which are usually difficult to visualize. The implanted beads were then imaged using a digital dental-type X-ray system and 3-dimensional reconstruction techniques. The study showed that three-quarters of the implanted beads remained where injected over a six-month period, and revealed movements of muscle and connective tissue that figure importantly in understanding how the brain controls eye movements.

"The surprising stability of gold beads in highly mobile eye tissues means that the method can be used to visualize very slow phenomena, such as those related to growth, as well as fast phenomena, such as those related to eye movement," said Joel M. Miller, PhD, lead researcher of the study.
-end-
This research was supported by a grant from the National Eye Institute.

You can read this article online in Journal of Vision at http://www.journalofvision.org/6/5/6/. Journal of Vision is published by ARVO, the Association for Research in Vision and Ophthalmology. All articles are free and open to anyone.

Established in 1928, The Association for Research in Vision and Ophthalmology, Inc. (ARVO) is a membership organization of more than 11,300 eye and vision researchers from over 70 countries. The Association encourages and assists its members and others in research, training, publication and dissemination of knowledge in vision and ophthalmology. ARVO's headquarters are located in Rockville, Md. The Association's Web site is www.arvo.org.

The National Eye Institute (NEI) conducts and supports research that leads to sight-saving treatments and plays a key role in reducing visual impairment and blindness. The NEI is part of the National Institutes of Health (NIH), an agency of the U.S. Department of Health and Human Services. For more information, logon to www.nei.nih.gov.

Association for Research in Vision and Ophthalmology

Related Magnetic Resonance Imaging Articles from Brightsurf:

Topology gets magnetic: The new wave of topological magnetic materials
The electronic structure of nonmagnetic crystals can be classified by complete theories of band topology, reminiscent of a 'topological periodic table.' However, such a classification for magnetic materials has so far been elusive, and hence very few magnetic topological materials have been discovered to date.

KIST develops ambient vibration energy harvester with automatic resonance tuning mechanism
Korean researchers have developed an energy harvester that can generate electric power from ambient vibrations with diverse frequencies through a novel automatic resonance tuning mechanism.

Cardiovascular magnetic resonance imaging findings in competitive college athletes after COVID-19
This study investigated the use of cardiac magnetic resonance imaging in competitive college athletes who recovered from COVID-19 to detect myocardial inflammation that would identify high-risk athletes for return to competitive play.

Using magnetic resonance elastography to detect epilepsy
A new study from the Beckman Institute used magnetic resonance elastography to compare the hippocampal stiffness in healthy individuals with those who have epilepsy.

Spintronics: Researchers show how to make non-magnetic materials magnetic
A complex process can modify non-magnetic oxide materials in such a way to make them magnetic.

Manipulating non-magnetic atoms in a chromium halide enables tuning of magnetic properties
The magnetic properties of a chromium halide can be tuned by manipulating the non-magnetic atoms in the material, a team, led by Boston College researchers, reports in the most recent edition of ScienceAdvances.

Imaging magnetic instabilities using laser accelerated protons
An international team of researchers is the first to experimentally demonstrate the 'Weibel' instabilities predicted by theory about 50 years ago, in the prestigious journal Nature Physics.

Single-spin electron paramagnetic resonance spectrum with kilohertz spectral resolution
A high-resolution paramagnetic resonance detection method based on the diamond nitrogen-vacancy (NV) color center quantum sensor was proposed and experimentally implemented by academician DU Jiangfeng from USTC.

Convenient location of a near-threshold proton-emitting resonance in 11B
Polish scientists working in Poland, France and USA explained the mysterious β-delayed proton decay of the neutron halo ground state of 11Be.

Detection of very high frequency magnetic resonance could revolutionize electronics
A team of scientists led by a physicist at the University of California, Riverside, has discovered an electrical detection method for terahertz electromagnetic waves, which are extremely difficult to detect.

Read More: Magnetic Resonance Imaging News and Magnetic Resonance Imaging Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.