Nav: Home

Solar cells, geological storage research receive DOE funding at the University of Texas at Austin

April 29, 2009

AUSTIN, Texas--With two $15 million grants, scientists and engineers aim to revolutionize solar cells and provide the fundamental science for geological storage of greenhouse gases as part of two Energy Frontier Research Centers (EFRCs) established at The University of Texas at Austin by the U.S. Department of Energy (DOE).

The White House announced the creation of 46 new EFRCs nationally in conjunction with a speech delivered by President Barack Obama at the annual meeting of the National Academy of Sciences.

One of the university's EFRCs, led by Paul Barbara, will focus on better understanding the molecular processes that underpin innovative nanomaterials that may be used in solar energy and batteries. The center, titled "Understanding Charge Separation and Transfer at Interfaces in Energy Materials and Devices," is one of 16 EFRCs to be funded by President Obama's American Recovery and Reinvestment Act. DOE plans to fund the EFRC at $15 million for a five-year period.

"The current pace of industrial research and development for solar energy and battery technologies is not fast enough to address society's energy needs, which are growing more critical every day," said Barbara, holder of the Richard J. V. Johnson Welch Regents Chair in Chemistry and director of the Center for Nano and Molecular Science and Technology. "The EFRC will allow us to develop completely new paradigms that address key fundamental scientific roadblocks to achieving U.S. energy security, and will also promote education and technology transfer in alternative energy."

Barbara's team will be composed of 18 faculty members from the College of Natural Sciences and the Cockrell School of Engineering. They will work in partnership with Sandia National Laboratories and the University of Montreal.

The university's second EFRC grant will fund the Center for Frontiers of Subsurface Energy Security, led by Gary Pope, holder of the Texaco Centennial Chair in Petroleum and Geosystems Engineering. DOE plans to fund this EFRC at $15.5 million over a five-year period in partnership with Sandia National Laboratory.

The goal of the center is to explain the movement or transport of carbon dioxide and other greenhouse gases in geological systems.

"Developing long-term solutions for our national energy security requires significant advances in understanding geological systems where we can lock away the byproducts of energy consumption, such as carbon dioxide," said Pope. "The long-term benefits from this improved understanding will extend far beyond the current focus on the storage of greenhouse gases to understanding the stability of geological systems and materials that are far from equilibrium for long periods of time--a Grand Challenge problem."

The interdisciplinary team in the Cockrell School of Engineering and the Jackson School of Geosciences at the university and the Engineering Sciences Center at Sandia National Laboratory combines expertise in basin analysis, reservoir engineering and fine-scale geophysical and geochemical modeling. Art Ratzel, director of the Engineering Sciences Center at Sandia, and Mary Wheeler, holder of the Ernest and Virginia Cockrell Chair in Engineering at the university, are associate directors of the new center.

This represents the strongest geotechnical team ever assembled to work together within such a center, according to Pope.

"As global energy demand grows over this century, there is an urgent need to reduce our dependence on fossil fuels and imported oil and curtail greenhouse gas emissions," said U.S. Secretary of Energy Steven Chu. "Meeting this challenge will require significant scientific advances. These centers will mobilize the enormous talents and skills of our nation's scientific workforce in pursuit of the breakthroughs that are essential to make alternative and renewable energy truly viable as large-scale replacements for fossil fuels."
-end-
More information on the EFRCs can be found on the DOE's Web site at www.er.doe.gov/bes/EFRC.

University of Texas at Austin

Related Solar Energy Articles:

Physicists develop approach to increase performance of solar energy
Experimental condensed matter physicists in the Department of Physics at the University of Oklahoma have developed an approach to circumvent a major loss process that currently limits the efficiency of commercial solar cells.
Lasers etch a 'perfect' solar energy absorber
In Light: Science and Applications, University of Rochester researchers demonstrate how laser etching of metallic surfaces creates the ''perfect solar energy absorber.'' This not only enhances energy absorption from sunlight, but also reduces heat dissipation at other wavelengths.
Mapping the energy transport mechanism of chalcogenide perovskite for solar energy use
Researchers from Lehigh University have, for the first time, revealed first-hand knowledge about the fundamental energy carrier properties of chalcogenide perovskite CaZrSe3, important for potential solar energy use.
New hybrid device can both capture and store solar energy
Researchers have reported a new device that can both efficiently capture solar energy and store it until it is needed, offering promise for applications ranging from power generation to distillation and desalination.
Materials that can revolutionize how light is harnessed for solar energy
Columbia scientists designed organic molecules capable of generating two excitons per photon of light, a process called singlet fission.
Solar energy becomes biofuel without solar cells
Soon we will be able to replace fossil fuels with a carbon-neutral product created from solar energy, carbon dioxide and water.
20 overlooked benefits of distributed solar energy
A study released today provides the most complete list yet of the advantages of solar energy -- from carbon sequestration to improvements for pollinator habitat.
Window film could even out the indoor temperature using solar energy
A window film with a specially designed molecule could be capable of taking the edge off the worst midday heat and instead distributing it evenly from morning to evening.
Danish researchers create worldwide solar energy model
For any future sustainable energy system, it is crucial to know the performance of photovoltaic (solar cell) systems at local, regional and global levels.
Novel thermoelectric nanoantenna design for use in solar energy harvesting
In an article published in the SPIE Journal of Nanophotonics (JNP), researchers from a collaboration of three labs in Mexico demonstrate an innovative nanodevice for harvesting solar energy.
More Solar Energy News and Solar Energy Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Meditations on Loneliness
Original broadcast date: April 24, 2020. We're a social species now living in isolation. But loneliness was a problem well before this era of social distancing. This hour, TED speakers explore how we can live and make peace with loneliness. Guests on the show include author and illustrator Jonny Sun, psychologist Susan Pinker, architect Grace Kim, and writer Suleika Jaouad.
Now Playing: Science for the People

#565 The Great Wide Indoors
We're all spending a bit more time indoors this summer than we probably figured. But did you ever stop to think about why the places we live and work as designed the way they are? And how they could be designed better? We're talking with Emily Anthes about her new book "The Great Indoors: The Surprising Science of how Buildings Shape our Behavior, Health and Happiness".
Now Playing: Radiolab

The Third. A TED Talk.
Jad gives a TED talk about his life as a journalist and how Radiolab has evolved over the years. Here's how TED described it:How do you end a story? Host of Radiolab Jad Abumrad tells how his search for an answer led him home to the mountains of Tennessee, where he met an unexpected teacher: Dolly Parton.Jad Nicholas Abumrad is a Lebanese-American radio host, composer and producer. He is the founder of the syndicated public radio program Radiolab, which is broadcast on over 600 radio stations nationwide and is downloaded more than 120 million times a year as a podcast. He also created More Perfect, a podcast that tells the stories behind the Supreme Court's most famous decisions. And most recently, Dolly Parton's America, a nine-episode podcast exploring the life and times of the iconic country music star. Abumrad has received three Peabody Awards and was named a MacArthur Fellow in 2011.