Squid skin inspires creation of next-generation space blanket

April 29, 2019

Irvine, Calif., April 29, 2019 - Drawing design inspiration from the skin of stealthy sea creatures, engineers at the University of California, Irvine have developed a next-generation, adaptive space blanket that gives users the ability to control their temperature. The innovation is detailed in a study published today in Nature Communications.

"Ultra-lightweight space blankets have been around for decades - you see marathon runners wrapping themselves in them to prevent the loss of body heat after a race - but the key drawback is that the material is static," said co-author Alon Gorodetsky, UCI associate professor of chemical & biomolecular engineering. "We've made a version with changeable properties so you can regulate how much heat is trapped or released."

The UCI researchers took design cues from various species of squids, octopuses and cuttlefish that use their adaptive, dynamic skin to thrive in aquatic environments. A cephalopod's unique ability to camouflage itself by rapidly changing color is due, in part, to skin cells called chromatophores that can instantly change from minute points to flattened disks.

"We use a similar concept in our work, where we have a layer of these tiny metal 'islands' that border each other," said lead author Erica Leung, a UCI graduate student in chemical & biomolecular engineering. "In the relaxed state, the islands are bunched together and the material reflects and traps heat, like a traditional Mylar space blanket. When the material is stretched, the islands spread apart, allowing infrared radiation to go through and heat to escape."

Gorodetsky said he has many more applications in mind for the novel material: as reflective inserts in buildings to provide an insulation layer that adapts to different environmental conditions; to fabricate tents that would be exceptionally good at keeping occupants comfortable outdoors; and to effectively manage the temperature of valuable electronic components.

Clothing would be a particularly fitting application for the new, bio-inspired material, according to Gorodetsky, who collaborates on research projects with counterparts at athletic apparel manufacturer Under Armour Inc.

"The temperature at which people are comfortable in an office is slightly different for everyone. Where one person might be fine at 70 degrees, the person at the next desk over might prefer 75 degrees," he said. "Our invention could lead to clothing that adjusts to suit the comfort of each person indoors. This could result in potential savings of 30 to 40 percent on heating and air conditioning energy use."

And those marathon runners who wrap themselves in space blankets might be able to type in a number on a garment-integrated user interface to achieve the desired level of thermal comfort, optimizing performance during races and recovery afterward.

Other benefits Leung mentioned include the material's light weight, ease and low cost of manufacturing, and durability. She noted that it can be stretched and returned to its original state thousands of times.
-end-
Support for this project was provided by the Advanced Research Projects Agency-Energy and the Air Force Office of Scientific Research. UCI's Irvine Materials Research Institute supplied materials characterization facilities used by the team.

About the University of California, Irvine: Founded in 1965, UCI is the youngest member of the prestigious Association of American Universities. The campus has produced three Nobel laureates and is known for its academic achievement, premier research, innovation and anteater mascot. Led by Chancellor Howard Gillman, UCI has more than 36,000 students and offers 222 degree programs. It's located in one of the world's safest and most economically vibrant communities and is Orange County's second-largest employer, contributing $5 billion annually to the local economy. For more on UCI, visit http://www.uci.edu.

Media access: Radio programs/stations may, for a fee, use an on-campus ISDN line to interview UCI faculty and experts, subject to availability and university approval. For more UCI news, visit news.uci.edu. Additional resources for journalists may be found at communications.uci.edu/for-journalists.

University of California - Irvine

Related Temperature Articles from Brightsurf:

History of temperature changes in the Universe revealed
How hot is the Universe today? How hot was it before?

A drop in temperature
In the nearly two centuries since German physician Carl Wunderlich established 98.6°F as the standard ''normal'' body temperature, it has been used by parents and doctors alike as the measure by which fevers -- and often the severity of illness -- have been assessed.

Kitchen temperature supercurrents from stacked 2D materials
A 'stack' of 2D materials could allow for supercurrents at ground-breakingly warm temperatures, easily achievable in the household kitchen.

Get diamonds, take temperature
Measuring the temperature of objects at a nanometer-scale has been a long challenge, especially in living biological samples, because of the lack of precise and reliable nanothermometers.

Chemical thermometers take temperature to the nanometric scale
Scientists from the Coordination Chemistry Laboratory and Laboratory for Analysis and Architecture of Systems, both of the CNRS, recently developed molecular films that can measure the operating temperature of electronic components on a nanometric scale.

How reliable are the reconstructions and models for past temperature changes?
Understanding of climate changes during the past millennia is crucial for the scientific attribution of the current warming and the accurate prediction of the future climate change.

New method measures temperature within 3D objects
University of Wisconsin-Madison engineers have made it possible to remotely determine the temperature beneath the surface of certain materials using a new technique they call depth thermography.

Who takes the temperature in our cells?
The conditions in the environment are subject to large fluctuations.

Taking the temperature of dark matter
Warm, cold, just right? Physicists at UC Davis are using gravitational lensing to take the temperature of dark matter, the mysterious substance that makes up about a quarter of our universe.

Thermal siphon effect: heat flows from low temperature to high temperature
In this work, researchers study (both thermal and electric) energy transport in physical networks that rewired from 2D regular lattices.

Read More: Temperature News and Temperature Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.