Nav: Home

Water creates traps in organic electronics

April 29, 2019

Poor-quality organic semiconductors can become high-quality semiconductors when manufactured in the correct way. Researchers at Linköping University show in an article in Nature Materials that the motion of charges in organic electronic devices is dramatically slowed down by minute amounts of water.

The discovery that organic materials, such as polymers, can act as semiconductors led to a Nobel Prize in Chemistry in 2000. Since then, research within organic electronics has truly exploded, not least at Linköping University, which is home to world-leading research in the field.

Organic semiconductors, however, do not conduct current as efficiently as, for example, semiconductors of silicon or other inorganic materials. The scientists have discovered that one of the causes of this is the formation of traps in the organic materials in which the charge carriers get stuck. Several research groups around the world have been working hard to understand not only where the traps are located, but also how they can be eliminated.

"There are traps in all organic semiconductors, but they are probably a greater problem in n-type materials, since these are generally poorer semiconductors than p-type materials", says Martijn Kemerink, professor of applied physics in the Division for Complex Materials and Devices at Linköping University.

Materials of p-type have a positive charge and the charge carriers consist of holes, while materials of n-type have charge carriers in the form of electrons, which gives the material a negative charge.

Martijn Kemerink and his colleagues at Linköping University have concluded that water is the villain in the piece. Specifically, the water is thought to sit in nanometre-sized pores in the organic material and is absorbed from the environment.

"In a p-type material the dipoles in the water align with their negative ends towards the holes, which are positively charged, and the energy of the complete system is lowered. You could say that the dipoles embed the charge carriers such that they cannot go anywhere anymore", says Martijn Kemerink.

For n-type materials, the water orients the other way around, but the effect is the same, the charge is trapped.

Experiments have been carried out in which the material is heated, to dry it out and cause the water to disappear. It works fine for a while, but the material subsequently re-absorbs water from the surrounding air, and much of the benefit gained by drying disappears.

"The more water, the more traps. We have also shown that the drier the films can be manufactured, the better conductors they are. The theoretical work by Mathieu Linares quantitatively confirmed our ideas about what was going on, which was very satisfactory. Our article in Nature Materials shows not only how to get the water out, but also how to make sure that the water stays out, in order to produce an organic material with stable conductivity."

In order to prevent the reuptake of water into the material once it has been dried, the scientists have also developed a way to remove the voids into which water molecules otherwise would have penetrated. This method is based on a combination of heating the material in the presence of a suitable organic solvent.

"Materials that were previously believed to be extremely poor semiconductors can instead become good semiconductors, as long as they are manufactured in a dry atmosphere. We have shown that dry-prepared materials tend to remain dry, while materials that are made in the presence of water can be dried. The latter are, however, extremely sensitive to water. This is true of the materials we have tested, but there's nothing to suggest that other organic semiconducting materials behave differently", says Martijn Kemerink.
-end-
General Rule for the Energy of Water-Induced Traps in Organic Semicondutors. Guangzheng Zuo, Mathieu Linares, Tanvi Upreti and Martijn Kemerink, Linköping University, Nature Materials 2019 DOI 10.1038/s41563-019-0347-y

Linköping University

Related Semiconductors Articles:

New class of 'soft' semiconductors could transform HD displays
New research by Berkeley Lab scientists could help usher in a new generation of high-definition displays, optoelectronic devices, photodetectors, and more.
'Magic' alloy could spur next generation of solar cells
In what could be a major step forward for a new generation of solar cells called 'concentrator photovoltaics,' University of Michigan researchers have developed a new semiconductor alloy that can capture the near-infrared light located on the leading edge of the visible light spectrum.
Organic electronics: Semiconductors as decal stickers
No more error-prone evaporation deposition, drop casting or printing: Scientists at Ludwig-Maximilians-Universitaet (LMU) in Munich and FSU Jena have developed organic semiconductor nanosheets, which can easily be removed from a growth substrate and placed on other substrates.
Coffee-ring effect leads to crystallization control in semiconductors
KAUST researchers developed a method to control the orientation and properties of crystal regions within polycrystalline semiconductors.
UNIST engineers oxide semiconductor just single atom thick
A new study, affiliated with South Korea's Ulsan National Institute of Science and Technology, has introduced a new technique that efficiently isolates circulating tumor cells from whole blood at a liquid-liquid interface.
NTU Singapore and NXP Semiconductors launch Singapore's first Smart Mobility consortium
Nanyang Technological University, Singapore (NTU Singapore) and NXP Semiconductors N.V., the world-leading automotive semiconductor supplier in secure connected cars, have launched Singapore's first Smart Mobility Consortium to focus on testing and developing smart mobility technologies.
Nanotechnology: Lighting up ultrathin films
Based on a study of the optical properties of novel ultrathin semiconductors, researchers of Ludwig-Maximilians-Universitaet in Munich have developed a method for rapid and efficient characterization of these materials.
King Faisal Prize for Würzburg physicist
Another award for Laurens Molenkamp: The physicist won the King Faisal International Prize (KFIP) 2017 in the 'Science' category.
Semiconductor-free microelectronics are now possible, thanks to metamaterials
Engineers at the University of California San Diego have fabricated the first semiconductor-free, optically-controlled microelectronic device.
One-pot synthesis towards sulfur-based organic semiconductors
Thiophene-fused polycyclic aromatic hydrocarbons (PAHs) are known to be useful as organic semiconductors due to their high charge transport properties.

Related Semiconductors Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...