Nav: Home

Magma is the key to the moon's makeup

April 29, 2019

New Haven, Conn. - For more than a century, scientists have squabbled over how the Earth's moon formed. But researchers at Yale and in Japan say they may have the answer.

Many theorists believe a Mars-sized object slammed into the early Earth, and material dislodged from that collision formed the basis of the moon. When this idea was tested in computer simulations, it turned out that the moon would be made primarily from the impacting object. Yet the opposite is true; we know from analyzing rocks brought back from Apollo missions that the moon consists mainly of material from Earth.

A new study published April 29 in Nature Geoscience, co-authored by Yale geophysicist Shun-ichiro Karato, offers an explanation.

The key, Karato says, is that the early, proto-Earth -- about 50 million years after the formation of the Sun -- was covered by a sea of hot magma, while the impacting object was likely made of solid material. Karato and his collaborators set out to test a new model, based on the collision of a proto-Earth covered with an ocean of magma and a solid impacting object.

The model showed that after the collision, the magma is heated much more than solids from the impacting object. The magma then expands in volume and goes into orbit to form the moon, the researchers say. This explains why there is much more Earth material in the moon's makeup. Previous models did not account for the different degree of heating between the proto-Earth silicate and the impactor.

"In our model, about 80% of the moon is made of proto-Earth materials," said Karato, who has conducted extensive research on the chemical properties of proto-Earth magma. "In most of the previous models, about 80% of the moon is made of the impactor. This is a big difference."

Karato said the new model confirms previous theories about how the moon formed, without the need to propose unconventional collision conditions -- something theorists have had to do until now.

For the study, Karato led the research into the compression of molten silicate. A group from the Tokyo Institute of Technology and the RIKEN Center for Computational Science developed a computational model to predict how material from the collision became the moon.
-end-
The first author of the study is Natsuki Hosono of RIKEN. Additional co-authors are Junichiro Makino and Takayuki Saitoh.

Yale University

Related Magma Articles:

How and when was carbon distributed in the Earth?
A magma ocean existing during the core formation is thought to have been highly depleted in carbon due to its high-siderophile (iron loving) behavior.
Research shows why there's a 'sweet spot' depth for underground magma chambers
Computer models show why eruptive magma chambers tend to reside between six and 10 kilometers underground.
'Crystal clocks' used to time magma storage before volcanic eruptions
The molten rock that feeds volcanoes can be stored in the Earth's crust for as long as a thousand years, a result which may help with volcanic hazard management and better forecasting of when eruptions might occur.
Magma is the key to the moon's makeup
For more than a century, scientists have squabbled over how the Earth's moon formed.
'Amazing snapshots' plumb volcanic depths
Research shedding light on the internal 'plumbing' of volcanoes may help scientists better understand volcanic eruptions and unrest.
Volcanoes fed by 'mush' reservoirs rather than molten magma chambers
Volcanoes are not fed by molten magma formed in large chambers finds a new study, overturning classic ideas about volcanic eruptions.
Smaller, more frequent eruptions affect volcanic flare-ups
Eruption patterns in a New Zealand volcanic system reveal how the movement of magma rising through the crust leads to smaller, more frequent eruptions.
Volcano researcher learns how Earth builds supereruption-feeding magma systems
After studying layers of pumice, measuring the amount of crystals in the samples and using thermodynamic models, the team determined that magma moved closer to the surface with each successive eruption.
'Ring around bathtub' at giant volcano field shows movement of subterranean magma
A UW-Madison study is tracing the geologic changes in the Maule volcanoes, located in a region in Chile that has seen enormous eruptions during the last million years.
Researchers find new way to estimate magma beneath Yellowstone supervolcano
Researchers at Washington State University and the University of Idaho have found a new way to estimate how fast magma is recharging beneath the Yellowstone supervolcano.
More Magma News and Magma Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.