Nav: Home

Magma is the key to the moon's makeup

April 29, 2019

New Haven, Conn. - For more than a century, scientists have squabbled over how the Earth's moon formed. But researchers at Yale and in Japan say they may have the answer.

Many theorists believe a Mars-sized object slammed into the early Earth, and material dislodged from that collision formed the basis of the moon. When this idea was tested in computer simulations, it turned out that the moon would be made primarily from the impacting object. Yet the opposite is true; we know from analyzing rocks brought back from Apollo missions that the moon consists mainly of material from Earth.

A new study published April 29 in Nature Geoscience, co-authored by Yale geophysicist Shun-ichiro Karato, offers an explanation.

The key, Karato says, is that the early, proto-Earth -- about 50 million years after the formation of the Sun -- was covered by a sea of hot magma, while the impacting object was likely made of solid material. Karato and his collaborators set out to test a new model, based on the collision of a proto-Earth covered with an ocean of magma and a solid impacting object.

The model showed that after the collision, the magma is heated much more than solids from the impacting object. The magma then expands in volume and goes into orbit to form the moon, the researchers say. This explains why there is much more Earth material in the moon's makeup. Previous models did not account for the different degree of heating between the proto-Earth silicate and the impactor.

"In our model, about 80% of the moon is made of proto-Earth materials," said Karato, who has conducted extensive research on the chemical properties of proto-Earth magma. "In most of the previous models, about 80% of the moon is made of the impactor. This is a big difference."

Karato said the new model confirms previous theories about how the moon formed, without the need to propose unconventional collision conditions -- something theorists have had to do until now.

For the study, Karato led the research into the compression of molten silicate. A group from the Tokyo Institute of Technology and the RIKEN Center for Computational Science developed a computational model to predict how material from the collision became the moon.
-end-
The first author of the study is Natsuki Hosono of RIKEN. Additional co-authors are Junichiro Makino and Takayuki Saitoh.

Yale University

Related Magma Articles:

Volcanic crystals give a new view of magma
Volcanologists are gaining a new understanding of what's going on inside the magma reservoir that lies below an active volcano and they're finding a colder, more solid place than previously thought, according to new research published June 16 in the journal Science.
Thermal history of magma may help scientists hone in on volcanic eruption forecasts
A new study analyzed crystals of the mineral zircon -- zirconium silicate -- in magma from an eruption in the Taupo Volcanic Zone in New Zealand about 700 years ago to determine the magma's history.
Crystals once deep inside a volcano offer new view of magma, eruption timing
Volcanologists are gaining a better understanding of what's going on inside the magma reservoir that lies below New Zealand's Mount Tarawera volcano.
Forget the red hot blob: Volcanic zircon crystals give new view of magma
The classic red teardrop of magma underneath a volcano peak is too simplistic.
Deep magma reservoirs are key to volcanic 'super-eruptions', new research suggests
Large reservoirs of magma stored deep in the Earth's crust are key to producing some of the Earth's most powerful volcanic eruptions, new research has shown.
New study documents aftermath of a supereruption, and expands size of Toba magma system
The rare but spectacular eruptions of supervolcanoes can cause massive destruction and affect climate patterns on a global scale for decades -- and a new study has found that these sites also may experience ongoing, albeit smaller eruptions for tens of thousands of years after.
Copper-bottomed deposits
Researchers at UNIGE have studied over 100,000 combinations to establish the depth and number of years required for magma to produce a given amount of copper.
The Deccan Traps: Double, double magma trouble
A new study suggests that roughly 65 million years ago, not just one plume of magma, but two, fueled the mass eruption along the Deccan Traps, an event that contributed to one of the greatest extinction events on Earth.
The secret of the supervolcano
Researchers have now found an explanation for what triggered the largest volcanic eruption witnessed by mankind.
Modeling magma to find copper
About 70 percent of the copper comes from deposits formed several million years ago during events of magma degassing within the Earth's crust just above subduction zones.

Related Magma Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#529 Do You Really Want to Find Out Who's Your Daddy?
At least some of you by now have probably spit into a tube and mailed it off to find out who your closest relatives are, where you might be from, and what terrible diseases might await you. But what exactly did you find out? And what did you give away? In this live panel at Awesome Con we bring in science writer Tina Saey to talk about all her DNA testing, and bioethicist Debra Mathews, to determine whether Tina should have done it at all. Related links: What FamilyTreeDNA sharing genetic data with police means for you Crime solvers embraced...