Nav: Home

How the bumble bee got its stripes

April 29, 2019

Researchers have discovered a gene that drives color differences within a species of bumble bees. This discovery helps to explain the highly diverse color patterns among bumble bee species as well as how mimicry--individuals in an area adopting similar color patterns--evolves. A study describing the gene, which occurs in a highly conserved region of the genome that provides blueprints for segmentation, was led by researchers at Penn State and appears April 29, 2019, in the journal Proceedings of the National Academy of Sciences.

"There is exceptional diversity in coloration of bumble bees," said Heather Hines, assistant professor of biology and of entomology at Penn State and principal investigator of the study. "Of the roughly 250 species of bumble bees, there are over 400 different color patterns that basically mix and match the same few colors over the different segments of a bee's body."

The most common bumble bee color patterns feature red around a bee's tail, thought to advertise its dangerous sting. In spite of the great diversity available, color patterns tend to converge toward similarity within a particular geographic region because they serve as an important and effective warning signal. This is an example of Müllerian mimicry, where similar, often vibrant, color patterns are used among multiple species to warn predators of a dangerous feature like toxicity or sharp spines.

"Müllerian mimicry has served as an example of evolution since the days of Darwin," said Hines. "Studying these mimicry systems--similar color patterns in many different species--allows us to see how natural traits evolve. It can also tell us about how traits are encoded in the genome: is there only one way to make a trait, or do different species arrive at similar traits through different genetic pathways?"

The research team investigated the genetic basis of color in the species Bombus melanopygus, which exhibits two regional color patterns. Bumble bees that live in the Pacific coastal region are black in the mid-abdomen, whereas those in the Rocky Mountain region are red. Previous studies suggested that a single gene was driving this color change, although the identity of this gene was unknown.

The researchers performed a genome-wide association study, where researchers look for variation in DNA sequence associated with variation in a trait. They identified a regulatory region that changes expression in a gene called Abdominal-B, which drives the shift in color.

"Abdominal-B is located in a highly conserved region of the genome that contains important patterning genes referred to as "Hox genes," which act as blueprints for the segments of a developing bee larva," said Hines. "Usually any change to these Hox genes triggers many other important changes in the development of the animal's segments, but we weren't seeing those other changes. It turns out that the altered expression of Abdominal-B happens so late in development that it can have very specific effects on color without other consequences."

The change in the regulatory region resulted in Abdominal-B being expressed in an unusual location late in pupal development; the same time in development that pigment is starting to show up in the bee. Abdominal-B is usually expressed closer to the tail of the bee, but in red-striped bees it is expressed in segments further up, causing a mid-abdominal color shift.

"It's possible that the expression of this gene and other Hox genes might move around late in development, allowing the mixing and matching within segments to create the modular color patterning that we see across bumble bees," said Hines.

According to the researchers, this particular genetic change in the regulatory region was not responsible for color shifts in ten closely related species of bumble bees with similar red and black color variation. It is likely that these other species undergo genetic changes that target other regulatory regions of the same gene or different genes entirely. The researchers are continuing to investigate the genetics of color shifts across species.

"This tells us that the basis for color patterning in Bombus melanopygus arose independently from patterning in other species," said Hines. "Bumble bees do not share this similarity in color pattern because they all inherited it from a common ancestor, so there must be many diverse routes to mimicry."
This study was also performed by Penn State researchers Li Tian, Sarthok Rasique Rahman, Briana Ezray, Patrick Lhomme, and Luca Franzini, and James Strange at Utah State University. This work was funded by a National Science Foundation CAREER grant to Hines.

Penn State

Related Genome Articles:

Genome evolution goes digital
Dr. Alan Herbert from InsideOutBio describes ground-breaking research in a paper published online by Royal Society Open Science.
Breakthrough in genome visualization
Kadir Dede and Dr. Enno Ohlebusch at Ulm University in Germany have devised a method for constructing pan-genome subgraphs at different granularities without having to wait hours and days on end for the software to process the entire genome.
Sturgeon genome sequenced
Sturgeons lived on earth already 300 million years ago and yet their external appearance seems to have undergone very little change.
A sea monster's genome
The giant squid is an elusive giant, but its secrets are about to be revealed.
Deciphering the walnut genome
New research could provide a major boost to the state's growing $1.6 billion walnut industry by making it easier to breed walnut trees better equipped to combat the soil-borne pathogens that now plague many of California's 4,800 growers.
Illuminating the genome
Development of a new molecular visualisation method, RNA-guided endonuclease -- in situ labelling (RGEN-ISL) for the CRISPR/Cas9-mediated labelling of genomic sequences in nuclei and chromosomes.
A genome under influence
References form the basis of our comprehension of the world: they enable us to measure the height of our children or the efficiency of a drug.
How a virus destabilizes the genome
New insights into how Kaposi's sarcoma-associated herpesvirus (KSHV) induces genome instability and promotes cell proliferation could lead to the development of novel antiviral therapies for KSHV-associated cancers, according to a study published Sept.
Better genome editing
Reich Group researchers develop a more efficient and precise method of in-cell genome editing.
Unlocking the genome
A team led by Prof. Stein Aerts (VIB-KU Leuven) uncovers how access to relevant DNA regions is orchestrated in epithelial cells.
More Genome News and Genome Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Making Amends
What makes a true apology? What does it mean to make amends for past mistakes? This hour, TED speakers explore how repairing the wrongs of the past is the first step toward healing for the future. Guests include historian and preservationist Brent Leggs, law professor Martha Minow, librarian Dawn Wacek, and playwright V (formerly Eve Ensler).
Now Playing: Science for the People

#566 Is Your Gut Leaking?
This week we're busting the human gut wide open with Dr. Alessio Fasano from the Center for Celiac Research and Treatment at Massachusetts General Hospital. Join host Anika Hazra for our discussion separating fact from fiction on the controversial topic of leaky gut syndrome. We cover everything from what causes a leaky gut to interpreting the results of a gut microbiome test! Related links: Center for Celiac Research and Treatment website and their YouTube channel
Now Playing: Radiolab

The Third. A TED Talk.
Jad gives a TED talk about his life as a journalist and how Radiolab has evolved over the years. Here's how TED described it:How do you end a story? Host of Radiolab Jad Abumrad tells how his search for an answer led him home to the mountains of Tennessee, where he met an unexpected teacher: Dolly Parton.Jad Nicholas Abumrad is a Lebanese-American radio host, composer and producer. He is the founder of the syndicated public radio program Radiolab, which is broadcast on over 600 radio stations nationwide and is downloaded more than 120 million times a year as a podcast. He also created More Perfect, a podcast that tells the stories behind the Supreme Court's most famous decisions. And most recently, Dolly Parton's America, a nine-episode podcast exploring the life and times of the iconic country music star. Abumrad has received three Peabody Awards and was named a MacArthur Fellow in 2011.