Nav: Home

New polymer films conduct heat instead of trapping it

April 29, 2019

Polymers are usually the go-to material for thermal insulation. Think of a silicone oven mitt, or a Styrofoam coffee cup, both manufactured from polymer materials that are excellent at trapping heat.

Now MIT engineers have flipped the picture of the standard polymer insulator, by fabricating thin polymer films that conduct heat -- an ability normally associated with metals. In experiments, they found the films, which are thinner than plastic wrap, conduct heat better than many metals, including steel and ceramic.

The team's results, published in the journal Nature Communications, may spur the development of polymer insulators as lightweight, flexible, and corrosion-resistant alternatives to traditional metal heat conductors, for applications ranging from heat dissipating materials in laptops and cellphones, to cooling elements in cars and refrigerators.

"We think this result is a step to stimulate the field," says Gang Chen, the Carl Richard Soderberg Professor of Power Engineering at MIT, and a senior co-author on the paper. "Our bigger vision is, these properties of polymers can create new applications and perhaps new industries, and may replace metals as heat exchangers."

Chen's co-authors include lead author Yanfei Xu, along with Daniel Kraemer, Bai Song, Jiawei Zhou, James Loomis, Jianjian Wang, Migda Li, Hadi Ghasemi, Xiaopeng Huang, and Xiaobo Li from MIT, and Zhang Jiang of Argonne National Laboratory.

In 2010, the team reported success in fabricating thin fibers of polyethylene that were 300 times more thermally conductive than normal polyethylene, and about as conductive as most metals. Their results, published in Nature Nanotechnology, drew the attention of various industries, including manufacturers of heat exchangers, computer core processors, and even race cars.

It soon became clear that, in order for polymer conductors to work for any of these applications, the materials would have to be scaled up from ultrathin fibers (a single fiber measured one-hundredth of the diameter of a human hair) to more manageable films.

"At that time we said, rather than a single fiber, we can try to make a sheet," Chen says. "It turns out it was a very arduous process."

The researchers not only had to come up with a way to fabricate heat-conducting sheets of polymer, but they also had to custom-build an apparatus to test the material's heat conduction, as well as develop computer codes to analyze images of the material's microscopic structures.

In the end, the team was able to fabricate thin films of conducting polymer, starting with a commercial polyethylene powder. Normally, the microscopic structure of polyethylene and most polymers resembles a spaghetti-like tangle of molecular chains. Heat has a difficult time flowing through this jumbled mess, which explains a polymer's intrinsic insulating properties.

Xu and her colleagues looked for ways to untangle polyethylene's molecular knots, to form parallel chains along which heat can better conduct. To do this, they dissolved polyethylene powder in a solution that prompted the coiled chains to expand and untangle. A custom-built flow system further untangled the molecular chains, and spit out the solution onto a liquid-nitrogen-cooled plate to form a thick film, which was then placed on a roll-to-roll drawing machine that heated and stretched the film until it was thinner than plastic wrap.

The team then built an apparatus to test the film's heat conduction. While most polymers conduct heat at around 0.1 to 0.5 watts per meter per kelvin, Xu found the new polyethylene film measured around 60 watts per meter per kelvin. (Diamond, the best heat-conducting material, comes in at around 2,000 watts per meter per kelvin, while ceramic measures about 30, and steel, around 15.) As it turns out, the team's film is two orders of magnitude more thermally conductive than most polymers, and also more conductive than steel and ceramics.

To understand why these engineered polyethylene films have such an unusually high thermal conductivity, the team conducted X-ray scattering experiments at the U.S. Department of Energy's Advanced Photon Source (APS) at the Argonne National Laboratory.

"These experiments, at one of the world's most bright synchrotron X-ray facilities, allow us to see the nanoscopic details within the individual fibers that make up the stretched film," Jiang says.

By imaging the ultrathin films, the researchers observed that the films exhibiting better heat conduction consisted of nanofibers with less randomly coiled chains, versus those in common polymers, which resemble tangled spaghetti. Their observations could help researchers engineer polymer microstructures to efficiently conduct heat.

"This dream work came true in the end," Xu says.

Going forward, the researchers are looking for ways to make even better polymer heat conductors, by both adjusting the fabrication process and experimenting with different types of polymers.

Zhou points out that the team's polyethylene film conducts heat only along the length of the fibers that make up the film. Such a unidirectional heat conductor could be useful in carrying heat away in a specified direction, inside devices such as laptops and other electronics. But ideally, he says the film should dissipate heat more effectively in any direction.

"If we have an isotropic polymer with good heat conductivity, then we can easily blend this material into a composite, and we can potentially replace a lot of conductive materials," Zhou says. "So we're looking into better heat conduction in all three dimensions."
-end-
This research was supported, in part, by the U.S. Department of Energy EERE Manufacturing Program, MIT Desphande Center, and the DoE Basic Energy Science programs.

Written by Jennifer Chu, MIT News Office

PAPER: "Nanostructured polymer films with metal-like thermal conductivity."

https://www.nature.com/articles/s41467-019-09697-7

ARCHIVE: Insulators made into conductors

http://news.mit.edu/2010/heat-nanofibers-0308

ARCHIVE: Engineers turn plastic insulator into heat conductor

http://news.mit.edu/2018/engineers-turn-plastic-insulator-heat-conductor-0330

ARCHIVE: Researchers tune material's color and thermal properties separately

http://news.mit.edu/2019/researchers-change-materials-color-thermal-0402

Massachusetts Institute of Technology

Related Polymers Articles:

Fluorescent technique brings aging polymers to light
Modern society relies on polymers, such as polypropylene or polyethylene plastic, for a wide range of applications, from food containers to automobile parts to medical devices.
Polymers to the rescue! Saving cells from damaging ice
Research published in the Journal of the American Chemical Society by University of Utah chemists Pavithra Naullage and Valeria Molinero provides the foundation to design efficient polymers that can prevent the growth of ice that damages cells.
Mixing the unmixable -- a novel approach for efficiently fusing different polymers
Cross-linked polymers are structures where large molecular chains are linked together, allowing exceptional mechanical properties and chemical resistance to the final product.
Theoretical tubulanes inspire ultrahard polymers
Rice University engineers print 3D blocks based on theoretical tubulanes and find they're nearly as hard as diamond.
New synthesis method yields degradable polymers
MIT chemists have come up with a way to make certain drug-delivery polymers more readily degradable by adding a novel type of building block to the polymer backbone.
Bottom-up synthesis of crystalline 2D polymers
Scientists at TU Dresden and Ulm University have succeeded in synthesizing sheet-like 2D polymers by a bottom-up process for the first time.
Secret messages hidden in light-sensitive polymers
Scientists from the CNRS and Aix-Marseille Université have recently shown how valuable light-sensitive macromolecules are: when exposed to the right wavelength of light, they can be transformed so as to change, erase or decode the molecular message that they contain.
Successful application of machine learning in the discovery of new polymers
As a powerful example of how artificial intelligence (AI) can accelerate the discovery of new materials, scientists in Japan have designed and verified polymers with high thermal conductivity -- a property that would be the key to heat management, for example, in the fifth-generation (5G) mobile communication technologies.
How to capture waste heat energy with improved polymers
By one official estimate, American manufacturing, transportation, residential and commercial consumers use only about 40 percent of the energy they draw on, wasting 60 percent.
Researchers can now predict properties of disordered polymers
Thanks to a team of researchers from the University of Illinois at Urbana-Champaign and the University of Massachusetts Amherst, scientists are able to read patterns on long chains of molecules to understand and predict behavior of disordered strands of proteins and polymers.
More Polymers News and Polymers Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Our Relationship With Water
We need water to live. But with rising seas and so many lacking clean water – water is in crisis and so are we. This hour, TED speakers explore ideas around restoring our relationship with water. Guests on the show include legal scholar Kelsey Leonard, artist LaToya Ruby Frazier, and community organizer Colette Pichon Battle.
Now Playing: Science for the People

#568 Poker Face Psychology
Anyone who's seen pop culture depictions of poker might think statistics and math is the only way to get ahead. But no, there's psychology too. Author Maria Konnikova took her Ph.D. in psychology to the poker table, and turned out to be good. So good, she went pro in poker, and learned all about her own biases on the way. We're talking about her new book "The Biggest Bluff: How I Learned to Pay Attention, Master Myself, and Win".
Now Playing: Radiolab

Uncounted
First things first: our very own Latif Nasser has an exciting new show on Netflix. He talks to Jad about the hidden forces of the world that connect us all. Then, with an eye on the upcoming election, we take a look back: at two pieces from More Perfect Season 3 about Constitutional amendments that determine who gets to vote. Former Radiolab producer Julia Longoria takes us to Washington, D.C. The capital is at the heart of our democracy, but it's not a state, and it wasn't until the 23rd Amendment that its people got the right to vote for president. But that still left DC without full representation in Congress; D.C. sends a "non-voting delegate" to the House. Julia profiles that delegate, Congresswoman Eleanor Holmes Norton, and her unique approach to fighting for power in a virtually powerless role. Second, Radiolab producer Sarah Qari looks at a current fight to lower the US voting age to 16 that harkens back to the fight for the 26th Amendment in the 1960s. Eighteen-year-olds at the time argued that if they were old enough to be drafted to fight in the War, they were old enough to have a voice in our democracy. But what about today, when even younger Americans are finding themselves at the center of national political debates? Does it mean we should lower the voting age even further? This episode was reported and produced by Julia Longoria and Sarah Qari. Check out Latif Nasser's new Netflix show Connected here. Support Radiolab today at Radiolab.org/donate.