Diving into the details: A lipid-binding pocket is a target for new cancer therapies

April 29, 2019

Normal cells have a complex system of checks and balances that regulate cell division. In cancer, the balance is tipped in favor of cell proliferation. This imbalance arises from increased levels or activity of oncoproteins (proteins that promote cell growth) or decreased levels or activity of tumor suppressors (proteins that limit cell growth). For example, in normal cells, the tumor suppressor protein phosphatase 2 (PP2A) controls cell growth, migration and immortalization to keep cells in check. Some cancers, such as lung cancer, have higher levels of an oncoprotein with the unwieldy moniker su(var)3-9, enhancer of zeste, trithorax (SET). SET binds PP2A and inhibits the normal function of PP2A, resulting in loss of the checkpoint for cancer growth.

Researchers at the Medical University of South Carolina (MUSC) who study lipid signaling in the context of cancer biology have examined the molecular details of the relationship between SET and PP2A and how the sphingolipid ceramide, a ubiquitous component of cell membranes and important signaling lipid, interacts with SET to regulate its function. Their results, published online on March 27, 2019 by The FASEB Journal, identified a specific nook in the SET protein's shape that provides a snug fit for ceramide, which results in the release of SET from PP2A and restores PP2A's growth-suppressive function.

"This was the first time we used structural biology techniques to understand how lipids bind proteins," says Besim Ogretmen, Ph.D., senior author for this study, Hollings Cancer Center (HCC) researcher, program coleader of HCC's Developmental Cancer Therapeutics Research Program, and professor of Biochemistry and Molecular Biology at MUSC.

The shape of the ceramide-SET interface was difficult to determine using X-ray crystallography, so Ogretmen and his team worked with the nuclear magnetic resonance (NMR) core facility at MUSC to overcome this hurdle. This work identified critical amino acids within the SET protein that contacted ceramide, resulting in the identification of a lipid-binding pocket. Further studies showed that an FDA approved immunosuppressive drug, fingolimod (a sphingolipid analog, known as FTY720), also bound this lipid-binding pocket.

This structural analysis represents a key step forward in the path to precision cancer treatment.

"Using an NMR-guided study, you can understand how to actually target an oncoprotein," Ogretmen says. "Following up those studies, you can also understand how targeting an oncoprotein leads to cell death."

This led Ogretmen to look at SET's interaction with PP2A. PP2A is a complex enzyme that consists of three components, each of which have multiple isoforms. This means that hundreds of different combinations of PP2A can exist within the same cell. Often, it has been assumed that all PP2A isoforms act the same way or that they are redundant.

Interestingly, this study revealed that PP2A is even more complex than previously thought.

"We learned that there is a specific sub-type of PP2A which is targeted by the SET oncoprotein," says Ogretmen. "When we relieve this oncoprotein from PP2A, by ceramide or fingolimod, we see there is a specific isoform of PP2A that is activated."

In cancer cells, SET binds a specific PP2A isoform and inhibits PP2A's tumor suppressor function. Binding of fingolimod to SET prevents SET from binding PP2A, allowing PP2A to be active and kill cancer cells. While there are many isoforms of PP2A, Ogretmen thinks that the isoform that his group identified might be selectively regulated by SET, which then may regulate the other PP2A isoforms.

In summary, this study provides a detailed understanding of how molecules see and associate with their targets, and these structural details provide a platform for future drug development. To that end, Ogretmen and his team are using structure-based modeling and rational drug design to develop inhibitors that mimic fingolimod and can bind the lipid-binding pocket on SET. Furthermore, they have begun to screen a library of FDA-approved, already existing drugs that have mechanisms of action similar to that of fingolimod without immune suppression. The advantage of this approach is that the drugs have already proved to be safe for human use, which would shorten the time to clinical use. These two approaches have identified several lead candidate compounds and may provide the basis for the development of inhibitors that restore cell growth checkpoints in cancer cells.
-end-
About MUSC

Founded in 1824 in Charleston, MUSC is the oldest medical school in the South, as well as the state's only integrated, academic health sciences center with a unique charge to serve the state through education, research and patient care. Each year, MUSC educates and trains more than 3,000 students and 700 residents in six colleges: Dental Medicine, Graduate Studies, Health Professions, Medicine, Nursing and Pharmacy. The state's leader in obtaining biomedical research funds, in fiscal year 2018, MUSC set a new high, bringing in more than $276.5 million. For information on academic programs, visit http://musc.edu.

As the clinical health system of the Medical University of South Carolina, MUSC Health is dedicated to delivering the highest quality patient care available, while training generations of competent, compassionate health care providers to serve the people of South Carolina and beyond. Comprising some 1,600 beds, more than 100 outreach sites, the MUSC College of Medicine, the physicians' practice plan, and nearly 275 telehealth locations, MUSC Health owns and operates eight hospitals situated in Charleston, Chester, Florence, Lancaster and Marion counties. In 2018, for the fourth consecutive year, U.S. News & World Report named MUSC Health the number one hospital in South Carolina. To learn more about clinical patient services, visit http://muschealth.org.

Medical University of South Carolina

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.