MRI scanning assists with next generation battery design

April 29, 2020

Magnetic resonance imaging (MRI) can provide an effective way of supporting the development of the next generation of high-performance rechargeable batteries, according to research led by the University of Birmingham.

The technique, which was developed to detect the movement and deposition of sodium metal ions within a sodium battery, will enable faster evaluation of new battery materials, and help to accelerate this type of battery's route to market.

Sodium batteries are widely recognised as a promising candidate to replace lithium ion batteries, currently widely used in devices such as portable electronics and electric vehicles. Several of the materials required to produce lithium ion batteries are critical or strategic elements and, therefore, researchers are working to develop alternative and more sustainable technologies.

Although sodium appears to have many of the properties required to produce an efficient battery, there are challenges in optimising the performance. Key amongst these is understanding how the sodium behaves inside the battery as it goes through its charging and discharging cycle, enabling the points of failure and degradation mechanisms to be identified.

A team, led by Dr Melanie Britton in the University of Birmingham's School of Chemistry, has developed a technique, with researchers from Nottingham University, that uses MRI scanning to monitor how the sodium performs in operando.

The research team also included scientists from the Energy materials group in the University of Birmingham's School of Metallurgy and Materials, and from Imperial College London. Their results are published in Nature Communications.

This imaging technique will enable scientists to understand how the sodium behaves as it interacts with different anode and cathode materials. They will also be able to monitor the growth of dendrites - branch-like structures that can grow inside the battery over time and cause it to fail, or even catch fire.

"Because the battery is a sealed cell, when it goes wrong it can be hard to see what the fault is," explains Dr Britton. "Taking the battery apart introduces internal changes that make it hard to see what the original flaw was or where it occurred. But using the MRI technique we've developed, we can actually see what's going on inside the battery while it is operational, giving us unprecedented insights into how the sodium behaves."

This technique gives us information into the change within the battery components during operation of a sodium ion battery, which are currently not available to us through other techniques. This will enable us to identify methods for detecting failure mechanisms as they happen, giving us insights into how to manufacture longer life and higher performing batteries.

The techniques used by the team were first designed in a collaboration with researchers at the Sir Peter Mansfield Imaging Centre at University of Nottingham which was funded by the Birmingham-Nottingham Strategic Collaboration Fund. This project aimed to develop MRI scanning of sodium isotopes as a medical imaging technique and the team were able to adapt these protocols for use in battery imaging. The development of novel materials and analytical characterisation is a primary focus of the Birmingham Centre for Energy Storage and Birmingham Centre for Critical Elements and Strategic Materials within the Birmingham Energy Institute.

University of Birmingham

Related Magnetic Resonance Imaging Articles from Brightsurf:

Topology gets magnetic: The new wave of topological magnetic materials
The electronic structure of nonmagnetic crystals can be classified by complete theories of band topology, reminiscent of a 'topological periodic table.' However, such a classification for magnetic materials has so far been elusive, and hence very few magnetic topological materials have been discovered to date.

KIST develops ambient vibration energy harvester with automatic resonance tuning mechanism
Korean researchers have developed an energy harvester that can generate electric power from ambient vibrations with diverse frequencies through a novel automatic resonance tuning mechanism.

Cardiovascular magnetic resonance imaging findings in competitive college athletes after COVID-19
This study investigated the use of cardiac magnetic resonance imaging in competitive college athletes who recovered from COVID-19 to detect myocardial inflammation that would identify high-risk athletes for return to competitive play.

Using magnetic resonance elastography to detect epilepsy
A new study from the Beckman Institute used magnetic resonance elastography to compare the hippocampal stiffness in healthy individuals with those who have epilepsy.

Spintronics: Researchers show how to make non-magnetic materials magnetic
A complex process can modify non-magnetic oxide materials in such a way to make them magnetic.

Manipulating non-magnetic atoms in a chromium halide enables tuning of magnetic properties
The magnetic properties of a chromium halide can be tuned by manipulating the non-magnetic atoms in the material, a team, led by Boston College researchers, reports in the most recent edition of ScienceAdvances.

Imaging magnetic instabilities using laser accelerated protons
An international team of researchers is the first to experimentally demonstrate the 'Weibel' instabilities predicted by theory about 50 years ago, in the prestigious journal Nature Physics.

Single-spin electron paramagnetic resonance spectrum with kilohertz spectral resolution
A high-resolution paramagnetic resonance detection method based on the diamond nitrogen-vacancy (NV) color center quantum sensor was proposed and experimentally implemented by academician DU Jiangfeng from USTC.

Convenient location of a near-threshold proton-emitting resonance in 11B
Polish scientists working in Poland, France and USA explained the mysterious β-delayed proton decay of the neutron halo ground state of 11Be.

Detection of very high frequency magnetic resonance could revolutionize electronics
A team of scientists led by a physicist at the University of California, Riverside, has discovered an electrical detection method for terahertz electromagnetic waves, which are extremely difficult to detect.

Read More: Magnetic Resonance Imaging News and Magnetic Resonance Imaging Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to