Biofabrication drives tissue engineering in 2019

April 29, 2020

New Rochelle, NY, April 28, 2020--In the quest to engineer replacement tissues and organs for improving human health, biofabrication has emerged as a crucial set of technologies that enable the control of precise architecture and organization. A new article reviews the impacts of biofabrication in tissue engineering and regenerative medicine over the previous year. The article is reported in Tissue Engineering, a peer-reviewed journal from Mary Ann Liebert, Inc., publishers. Click to read the article for free on the Tissue Engineering website through May 28, 2020.

In "Tissue Engineering and Regenerative Medicine 2019: the Role of Biofabrication--A Year in Review", Tiago Ramos, University College of London, UK, and Lorenzo Moroni, Maastricht University, the Netherlands, discuss the growing field of biofabrication and its recent impacts on tissue engineering and other disciplines. The authors first clarify terminology, including the concepts of bioassembly, bioprinting, and bioinks. They then catalog and highlight the developments in the 3D bioprinting of several specific tissue models, discussing both the extrusion-based methods and the newer optical fabrication techniques of stereolithography, laser-induced forward transfer, and two-photon lithography. Finally, developments are explored in the area of 4D bioprinting--the time-dependent modification of fabricated constructs.

"Drs. Ramos and Moroni, both leaders in the field of bioprinting and biofabrication, brilliantly detail the rising impact of printing on the tissue engineering community," says Tissue Engineering Co-Editor-in-Chief John P. Fisher, PhD, Fischell Family Distinguished Professor & Department Chair, and Director of the NIH Center for Engineering Complex Tissues at the University of Maryland. "The unique capabilities 3D printing--precision, flexibility, and personalization--have driven its growth in medicine, and the critical, recent success are nicely detailed in this review."
-end-
About the Journal

Tissue Engineering is an authoritative peer-reviewed journal published monthly online and in print in three parts: Part A, the flagship journal published 24 times per year; Part B: Reviews, published bimonthly, and Part C: Methods, published 12 times per year. Led by Co-Editors-in-Chief Antonios G. Mikos, PhD, Louis Calder Professor at Rice University, Houston, TX, and John P. Fisher, PhD, Fischell Family Distinguished Professor & Department Chair, and Director of the NIH Center for Engineering Complex Tissues at the University of Maryland, the Journal brings together scientific and medical experts in the fields of biomedical engineering, material science, molecular and cellular biology, and genetic engineering. Leadership of Tissue Engineering Parts B (Reviews) and Part C (Methods) is provided by Katja Schenke-Layland, PhD, Eberhard Karls University, Tübingen, Heungsoo Shin, PhD, Hanyang University; and John A. Jansen, DDS, PhD, Radboud University, and Xiumei Wang, PhD, Tsinghua University respectively. Tissue Engineering is the official journal of the Tissue Engineering & Regenerative Medicine International Society (TERMIS). Complete tables of content and a sample issue may be viewed on the Tissue Engineering website.

About the Publisher

Mary Ann Liebert, Inc., publishers is a privately held, fully integrated media company known for establishing authoritative peer-reviewed journals in many promising areas of science and biomedical research, including Stem Cells and Development, Human Gene Therapy, and Advances in Wound Care. Its biotechnology trade magazine, GEN (Genetic Engineering & Biotechnology News), was the first in its field and is today the industry's most widely read publication worldwide. A complete list of the firm's 80 journals, books, and newsmagazines is available on the Mary Ann Liebert, Inc., publishers website.

Mary Ann Liebert, Inc./Genetic Engineering News

Related Regenerative Medicine Articles from Brightsurf:

Stem cells: new insights for future regenerative medicine approaches
The study published in Open Biology unravels important data for a better understanding of the process of division in stem cells and for the development of safer ways to use them in medicine.

Engineered developmental signals could illuminate regenerative medicine
For a tiny embryo to develop into an adult organism, its cells must develop in precise patterns and interact with their neighbors in carefully orchestrated ways.

A new discovery in regenerative medicine
An international collaboration involving Monash University and Duke-NUS researchers have made an unexpected world-first stem cell discovery that may lead to new treatments for placenta complications during pregnancy.

New research into stem cell mutations could improve regenerative medicine
Research from the University of Sheffield has given new insight into the cause of mutations in pluripotent stem cells and potential ways of stopping these mutations from occurring.

Keratin scaffolds could advance regenerative medicine and tissue engineering for humans
Researchers at Mossakowski Medical Research Center of the Polish Academy of Science have developed a simple method for preparing 3D keratin scaffold models which can be used to study the regeneration of tissue.

NUS Medicine researchers can reprogramme cells to original state for regenerative medicine
Scientists from NUS Medicine have found a way to induce totipotency in embryonic cells that have already matured into pluripotency.

A new material for regenerative medicine capable to control cell immune response
Scientists of Tomsk Polytechnic University jointly with the University of Montana (USA) proposed a new promising material for regenerative medicine for recovery of damaged tissues and blood vessels.

Optoceutics: A new technique using light for regenerative medicine
Researchers in Italy at IIT-Istituto Italiano di Tecnologia used visible light together with photo-sensitive and biocompatible materials to facilitate the formation of new blood vessels in vitro.

Major stem cell discovery to boost research into development and regenerative medicine
A new approach has enabled researchers to create Expanded Potential Stem Cells (EPSCs) of both pig and human cells.

Spinning-prism microscope helps gather stem cells for regenerative medicine
Pluripotent stem cells are crucial to regenerative medicine, but better screening methods are needed to isolate safe and effective cells for medical use.

Read More: Regenerative Medicine News and Regenerative Medicine Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.