Improving immunotherapy for cancer

April 29, 2020

Our immune system not only protects us against infection, but also against cancer. This powerful protection is based in particular on the activation of special cells of the immune system, CD8+ T cells. These cells recognize infected or cancer cells and kill them specifically.

"The ability of the immune system and especially CD8+ T cells to eliminate cancer cells in tissues such as the lung, gut and liver is often limited in tumor patients," explains Percy Knolle, Professor of Molecular Immunology at the Technical University of Munich (TUM).

Administration of antibodies can reinvigorate the cancer patient´s immune response

Cancer cells send out signals that slow down the immune response against them. The knowledge of how tumor-specific immunity is restricted by these signals has led to the development of immunotherapies against cancer through what is referred to as checkpoint inhibition.

In this form of therapy, the signals emitted by cancer cells are inhibited and unleash cancer-specific immunity. Administration of antibodies that target these signals ("checkpoint inhibition") often can reinvigorate the patient´s immune response against the tumor.

Novel suppressive mechanism discovered that inhibits cancer-specific immune responses

The TUM research group led by Dr. Bastian Höchst and Prof. Percy Knolle at the Freising-Weihenstephan site and the University Hospital Klinikum rechts der Isar in Munich, together with researchers from the University of Heidelberg and the Otto von Guericke University Magdeburg as well as Yale University in the US, has discovered a novel mechanism of suppression that inhibits cancer-specific immune responses.

According to their recent publication, this suppression is mediated by a breakdown product from glucose metabolism. A particular type of myeloid immune cell (myeloid suppressor cells), which suppresses the activation of CD8+ T cells, are often found near and in tumor tissues. They are known to severely limit cancer-specific immunity.

"We were able to identify the excessive production of the breakdown product from glucose metabolism as a characteristic feature of suppressor cells in the tumor and at the same time to attribute inhibition of cancer-specific immunity to this suppressive metabolite," explained Dr. Bastian Höchst.

New method to activate immune cells to kill tumor cells

The researchers found that inhibition of cancer-specific CD8+ T cells is enforced by this suppressive metabolite through depletion of amino acids that are essential for the activation of immune cells. Such inhibited immune cells remain alive, but are arrested in hibernation-like state of low metabolic activity.

The researchers succeeded in developing methods, with which these "hibernating" immune cells can be re-awakened. The combination of "checkpoint inhibition" with neutralization of the suppressive metabolite led to a strong increase in cancer-specific immune response in experiments.

"These results will lead the way to development of new forms of immunotherapy against cancer," summarized Prof. Knolle.
-end-


Technical University of Munich (TUM)

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.