'Gargantuan' hail in Argentina may have smashed world record

April 29, 2020

A supercell thunderstorm pelted a city center in Argentina a few years ago with hailstones so large scientists suggested a new category to describe them -- gargantuan hail.

Researchers investigating the 2018 storm found one hailstone likely measured between 7.4 and 9.3 inches across, potentially setting a new world record. The current record belongs to a hailstone that measured 8 inches across, or about the size of a volleyball, that fell near Vivian, South Dakota.

"It's incredible," said Matthew Kumjian, associate professor in the Department of Meteorology and Atmosphere Science at Penn State. "This is the extreme upper end of what you'd expect from hail."

The scientists proposed hail larger than 6 inches should be classified as gargantuan, and said more awareness of these events, while rare, could help piece together a better understanding of the dangerous storms.

"Anything larger than about a quarter in size can start putting dents into your car," Kumjian said. "In some rare cases, 6-inch hail has actually gone through roofs and multiple floors in houses. We'd like to help mitigate the impacts on life and property, to help anticipate these kinds of events."

The storm in heavily populated Villa Carlos Paz, Argentina, offered scientists a rare opportunity to study a well-documented case of gargantuan hail. As the storm unfolded, residents took to social media, posting pictures and videos.

Researchers followed up on the accounts a year later, interviewing witnesses, visiting sites where damage occurred, collecting photogrammetric data and analyzing radar observations. Using photogrammetry -- taking measurements from photographs -- and video evidence, the scientists estimated one hailstone may have set a world record.

The scientists reported their findings in the Bulletin of the American Meteorological Society.

"Such a well-observed case is an important step forward in understanding environments and storms that produce gargantuan hail, and ultimately how to anticipate and detect such extreme events," Kumjian said.

Hail typically occurs during severe storms, which produce strong, sustained updrafts. The winds hold hailstones aloft long enough to grow in sub-zero temperatures high in the atmosphere. But predicting hail size remains challenging, the scientists said.

Rachel Gutierrez, a graduate student at Penn State and co-author of the paper, found a connection between a storm updraft's rotational velocity, or how fast it is spinning, and larger hail size, but much remains unknown about the relationship.

She said the data, especially from a storm outside the United States, is invaluable.

"There typically isn't a lot of data from storms outside the U.S.," Gutierrez said. "Having this shows us these crazy, high-impact events can happen all over the world."

Gargantuan hail events may be more common than once believed, but researchers need volunteers willing to report hail and provide accurate measurements, either by including a common item for scale, or a ruler, Gutierrez said.
-end-
Kevin Bowley, assistant teaching professor, also contributed from Penn State.

Other researchers on the project were Joshua Soderholm, then a Humboldt Fellow at the University of Bonn, Germany, and now a research scientist with the Bureau of Meteorology in Australia; Stephen Nesbitt, professor at the University of Illinois at Urbana-Champaign; Lorena Medina Luna, education and outreach specialist at the National Center for Atmospheric Research; James Marquis, scientist at Pacific Northwest National Laboratory; and Paolo Salio, professor, Paula Maldonado, doctoral student, and Milagros Alvarez Imaz, student, at the Centro de Investigaciones del Mar y la Atmósfera in Argentina.

The National Science Foundation and the Insurance Institute for Business and Home Safety partly funded this research.

Penn State

Related Atmosphere Articles from Brightsurf:

ALMA shows volcanic impact on Io's atmosphere
New radio images from ALMA show for the first time the direct effect of volcanic activity on the atmosphere of Jupiter's moon Io.

New study detects ringing of the global atmosphere
A ringing bell vibrates simultaneously at a low-pitched fundamental tone and at many higher-pitched overtones, producing a pleasant musical sound. A recent study, just published in the Journal of the Atmospheric Sciences by scientists at Kyoto University and the University of Hawai'i at Mānoa, shows that the Earth's entire atmosphere vibrates in an analogous manner, in a striking confirmation of theories developed by physicists over the last two centuries.

Estuaries are warming at twice the rate of oceans and atmosphere
A 12-year study of 166 estuaries in south-east Australia shows that the waters of lakes, creeks, rivers and lagoons increased 2.16 degrees in temperature and increased acidity.

What makes Saturn's atmosphere so hot
New analysis of data from NASA's Cassini spacecraft found that electric currents, triggered by interactions between solar winds and charged particles from Saturn's moons, spark the auroras and heat the planet's upper atmosphere.

Galactic cosmic rays affect Titan's atmosphere
Planetary scientists using the Atacama Large Millimeter/submillimeter Array (ALMA) revealed the secrets of the atmosphere of Titan, the largest moon of Saturn.

Physics: An ultrafast glimpse of the photochemistry of the atmosphere
Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

Using lasers to visualize molecular mysteries in our atmosphere
Molecular interactions between gases and liquids underpin much of our lives, but difficulties in measuring gas-liquid collisions have so far prevented the fundamental exploration of these processes.

The atmosphere of a new ultra hot Jupiter is analyzed
The combination of observations made with the CARMENES spectrograph on the 3.5m telescope at Calar Alto Observatory (Almería), and the HARPS-N spectrograph on the National Galileo Telescope (TNG) at the Roque de los Muchachos Observatory (Garafía, La Palma) has enabled a team from the Instituto de Astrofísica de Canarias (IAC) and from the University of La Laguna (ULL) to reveal new details about this extrasolar planet, which has a surface temperature of around 2000 K.

An exoplanet loses its atmosphere in the form of a tail
A new study, led by scientists from the Instituto de Astrofísica de Canarias (IAC), reveals that the giant exoplanet WASP-69b carries a comet-like tail made up of helium particles escaping from its gravitational field propelled by the ultraviolet radiation of its star.

Iron and titanium in the atmosphere of an exoplanet
Exoplanets can orbit close to their host star. When the host star is much hotter than our sun, then the exoplanet becomes as hot as a star.

Read More: Atmosphere News and Atmosphere Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.