Superoxide produces hydroxyl radicals that break down dissolved organic matter in water

April 29, 2020

According to a study published in Water Research in April 2020, superoxide produces hydroxyl radicals in lake water. Hydroxyl radicals break down poorly biodegradable organic matter such as humic substances and anthropogenic pollutants.

In the aquatic environment, microbes, light and reduced compounds produce superoxide. Superoxide is a reactive oxygen species but relatively unreactive against organic compounds in water despite the prefix 'super' in its name.

Superoxide however can initiate a pathway of redox reactions. It can reduce ferric iron to ferrous one or be reduced itself to hydrogen peroxide. The Fenton reaction between ferrous iron and hydrogen peroxide produces hydroxyl radicals, very effective oxidants of organic matter. According the above mentioned reaction pathway, the production of one hydroxyl radical requires three superoxide ions.

"Superoxide is ubiquitously produced in lake water and thus a potential source of hydroxyl radicals." says Dr. Anssi Vähätalo from University of Jyväskylä, "We tested the reactivity of superoxide with the ferric iron complexed with dissolved organic matter."

A recent work published on Water Research shows that the introduction of superoxide triggered the formation of hydroxyl radical in lake water. A big surprise was that the amount of hydroxyl radicals produced was 24-times larger than expected from the introduced amount of superoxide. The hydroxyl radicals reacted with dissolved organic matter and broke it down extensively. These reactions likely regenerated superoxide and were responsible for the autocatalytic production of hydroxyl radicals.

"Superoxide has a hidden superpower, as it can initiate autocatalytic production of hydroxyl radicals in lake water. Hydroxyl radicals are the nature's own cleansing agent that can remove persistent natural and anthropogenic organic matter from the environment. Superoxide earns its prefix "super" when it produces hydroxyl radicals in an autocatalytic manner", Vähätalo concludes.

Recent studies have shown that nearly all microbes produce extracellular superoxide. Because microbes are ubiquitous so is superoxide too. In surface waters, iron is associated with dissolved organic matter and can catalyze production of hydroxyl radicals from superoxide. Superoxide-driven production of hydroxyl radicals is likely an important part of self-cleaning mechanisms that breaks down refractory organic matters in lakes.

The extreme reactivity of hydroxyl radicals is beneficial in the advance oxidation techniques that aim for the breakdown of anthropogenic pollutants.

"In our study, the produced amount of hydroxyl radical was several times larger than the amount of superoxide introduced into the solution of iron associated with humic substances. This type of autocatalysis of hydroxyl radicals from superoxide is naturally a high desirable property in advance oxidation techniques and worth of further studies", Vähätalo explains.
-end-
Link to the article:

https://www.sciencedirect.com/science/article/abs/pii/S0043135420303195?via%3Dihub

Additional information:

Anssi Vähätalo, the University of Jyväskylä, anssi.vahatalo@jyu.fi, +358 40 805 4744

Yihua Xiao, the University of Jyväskylä, yihua.y.xiao@jyu.fi

Luca Carena, the University of Torino, luca.carena@unito.it

University of Jyväskylä - Jyväskylän yliopisto

Related Microbes Articles from Brightsurf:

A new look at deep-sea microbes
Microbes found deeper in the ocean are believed to have slow population turnover rates and low amounts of available energy.

Microbes might manage your cholesterol
Researchers discover a link between human blood cholesterol levels and a gene in the microbiome that could one day help people manage their cholesterol through diet, probiotics, or entirely new types of treatment.

Can your gut microbes tell you how old you really are?
Harvard longevity researchers in collaboration with Insilico Medicine develop the first AI-powered microbiomic aging clock

What can be learned from the microbes on a turtle's shell?
Research published in the journal Microbiology has found that a unique type of algae, usually only seen on the shells of turtles, affects the surrounding microbial communities.

Life, liberty -- and access to microbes?
Poverty increases the risk for numerous diseases by limiting people's access to healthy food, environments and stress-free conditions.

Rye is healthy, thanks to an interplay of microbes
Eating rye comes with a variety of health benefits. A new study from the University of Eastern Finland now shows that both lactic acid bacteria and gut bacteria contribute to the health benefits of rye.

Gut microbes may affect the course of ALS
Researchers isolated a molecule that may be under-produced in the guts of patients.

Gut microbes associated with temperament traits in children
Scientists in the FinnBrain research project of the University of Turku discovered that the gut microbes of a 2.5-month-old infant are associated with the temperament traits manifested at six months of age.

Gut microbes eat our medication
Researchers have discovered one of the first concrete examples of how the microbiome can interfere with a drug's intended path through the body.

Microbes can grow on nitric oxide
Nitric oxide (NO) is a central molecule of the global nitrogen cycle.

Read More: Microbes News and Microbes Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.