Duke Researchers Discover Central Role Of Nitric Oxide In Hemoglobin Action

April 29, 1996

DURHAM, N.C. -- Duke University Medical Center researchers have found that nitric oxide, combined with hemoglobin, is a major regulator of gas exchange, as well as blood pressure, in the circulatory system. The finding appears to have solved the long-standing mystery of how blood carries oxygen to body tissues and extracts waste carbon dioxide while keeping vessels open and blood pressure steady.

Scientists say the discovery, detailed in the March 21 issue of the British journal Nature, could quickly pay off in developing the first effective blood substitute, and may ultimately change the way many diseases are treated.

"We now know that nitric oxide is involved in the blood's major functions," said cardiologist and pulmonologist Dr. Jonathan Stamler in an interview. "Oxygen delivery is essential to life and a deficiency in oxygen is associated with diseases of every organ. The same picture is gradually emerging for nitric oxide (NO). Understanding delivery of both in concert could have profound therapeutic implications.

"The duet of hemoglobin and NO is fantastically symbiotic in carrying out the machinery of life," he said. "Hemoglobin uses a spritz of the NO it carries to help get oxygen into tissues. And NO helps hemoglobin carry away the trash of carbon dioxide. It's fantastic."

The work was funded by the National Institutes of Health and the Pew Charitable Trusts. Working with Stamler was first author, Duke research associate Li Jia, and Joseph Bonaventura and Celia Bonaventura, from Duke's Nicholas School of the Environment and the Marine Biomedical Center.

Nitric oxide, long known as a noxious gas in the atmosphere, has been found over the past several years to play a major role in numerous biological systems. For example, scientists discovered that NO worked in the circulatory system to dilate blood vessels. "Free" NO is released by endothelial cells on the inside of vessel walls where it migrates to nearby muscle cells and relaxes them, opening the vessel and lowering blood pressure.

At the same time, researchers observed that this free nitric oxide was inactivated by hemoglobin, as the iron molecule in hemoglobin essentially consumes NO.

Adding these bits of knowledge together -- that NO keeps vessels open, but that hemoglobin destroys NO -- produced a major paradox that no one could solve, Stamler said. How can blood vessels maintain a constant pressure when the hemoglobin that flows through them destroys NO on contact?

Stamler suspected that NO had to exist in some other form in the blood, apart from the "free" NO that is made in the vessel and destroyed by hemoglobin. So he and Jia worked with the Bonaventuras, who are experts on hemoglobin, designing investigations using blood from humans and rats.

After a series of experiments, the team discovered that a NO-containing hemoglobin molecule is synthesized in the lungs and that the NO attached to it differs from that produced in vessel walls. Hemoglobin is a large protein complex containing "heme" groups, which include a central iron molecule that serves as a site on which to bind and carry oxygen. The same site also destroys "free" NO. Stamler and his team found the "new" NO attaches itself to the hemoglobin-oxygen complex on a cysteine residue that keeps the NO away from the hemes.

Specifically, in its new form, this NO is attached to a thiol and is called SNO (for S-nitrosothiols). SNO retains its NO-like properties, but is "a souped-up cousin," Stamler said. SNO is protected from inactivation by hemes, unlike NO produced in vessel walls, and it has a wider range of functions than NO. Not many SNOs have been found in the body to date, but the ones that have been discovered are powerful forms of NO, he said. For example, SNO can kill invading bacteria or microbes. Free NO cannot, said Stamler.

"We always knew that the hemoglobin complex had two reactive arms, a heme and a cysteine, to which other molecules could attach, but no one knew what the cysteine's function was," he said. "We now know that it serves to bind NO."

Further experimentation by the group uncovered the intricate interplay between hemoglobin, oxygen, NO and carbon dioxide:"Once, we thought the primary job of hemoglobin was to carry oxygen," said co-author Joseph Bonaventura in an interview. "Now we can show that nitric oxide delivery may be comparable in importance. Here we have the lungs synthesizing a compound and delivering it to tissue where it is metabolized, just as oxygen is."

In addition, the research shows that NO has a regulatory "allosteric" function that has not been described before, Stamler said. Allosteric regulation is when one molecule causes a protein to change its shape and, thereby, its function. Hemoglobin is "a classic allosteric protein" because its function depends on whether or not oxygen is bound to it,Stamler said. Now, the Duke researchers said, NO is also involved in the allosteric transition of hemoglobin.

Duke University

Related Blood Pressure Articles from Brightsurf:

Children who take steroids at increased risk for diabetes, high blood pressure, blood clots
Children who take oral steroids to treat asthma or autoimmune diseases have an increased risk of diabetes, high blood pressure, and blood clots, according to Rutgers researchers.

High blood pressure treatment linked to less risk for drop in blood pressure upon standing
Treatment to lower blood pressure did not increase and may decrease the risk of extreme drops in blood pressure upon standing from a sitting position.

Changes in blood pressure control over 2 decades among US adults with high blood pressure
National survey data were used to examine how blood pressure control changed overall among U.S. adults with high blood pressure between 1999-2000 and 2017-2018 and by age, race, insurance type and access to health care.

Transient increase in blood pressure promotes some blood vessel growth
Blood vessels are the body's transportation system, carrying oxygen and nutrients to cells and whisking away waste.

Effect of reducing blood pressure medications on blood pressure control in older adults
Whether the amount of blood pressure medications taken by older adults could be reduced safely and without a significant change in short-term blood pressure control was the objective of this randomized clinical trial that included 534 adults 80 and older.

Brain blood flow sensor discovery could aid treatments for high blood pressure & dementia
A study led by researchers at UCL has discovered the mechanism that allows the brain to monitor its own blood supply, a finding in rats which may help to find new treatments for human conditions including hypertension (high blood pressure) and dementia.

Here's something that will raise your blood pressure
The apelin receptor (APJ) has been presumed to play an important role in the contraction of blood vessels involved in blood pressure regulation.

New strategy for treating high blood pressure
The key to treating blood pressure might lie in people who are 'resistant' to developing high blood pressure even when they eat high salt diets, shows new research published today in Experimental Physiology.

Arm cuff blood pressure measurements may fall short for predicting heart disease risk in some people with resistant high blood pressure
A measurement of central blood pressure in people with difficult-to-treat high blood pressure could help reduce risk of heart disease better than traditional arm cuff readings for some patients, according to preliminary research presented at the American Heart Association's Hypertension 2019 Scientific Sessions.

Heating pads may lower blood pressure in people with high blood pressure when lying down
In people with supine hypertension due to autonomic failure, a condition that increases blood pressure when lying down, overnight heat therapy significantly decreased systolic blood pressure compared to a placebo.

Read More: Blood Pressure News and Blood Pressure Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.