Researchers Track Cause Of Energy Loss In Superconducting

April 29, 1998

High-temperature superconducting materials have almost limitless potential but are often less "super" in real performance, since they lose as much as 95 percent of the current running through them.

A University of Wisconsin-Madison experiment has found a surprising contributor to this energy sink, by pinpointing tiny defects that clog electrical flow through the wires.

The study, published in the April 30 issue of the journal Nature, provides promising evidence that one of high-temperature superconductivity's biggest obstacles can be overcome. The answer lies in devising new manufacturing methods to eliminate the flaws.

"What is absolutely critical to high-temperature superconductivity's future is making better, more efficient conductors which have improved current flow," said David Larbalestier, senior author of the study and director of UW-Madison's Applied Superconductivity Center (ASC).

Larbalestier noted that today's materials have a critical-current density - or total volume of current that reaches its destination - of only about one-fourth to one-tenth of their potential.

"Unchecked damage during the production of these materials is a major barrier to current flow," he added. "This experiment provides a clear map of what to do next to improve high-temperature superconductivity."

Superconducting materials have the ability to conduct electricity with no loss of energy. It was first demonstrated more than 80 years ago that some materials cooled to almost absolute zero will lose all resistance to electricity. Absolute zero is zero degrees Kelvin or minus 460 degrees Fahrenheit.

Since 1986, the field has been energized by a flurry of discoveries of materials that superconduct at higher temperatures - a full 100 degrees "warmer." But the problem has been getting these materials to conduct energy efficiently across long wires.

While the race to achieve superconductivity at higher temperatures grabs most of the popular attention, Larbalestier said superconducting temperatures are high enough now to be commercially useful. The greatest hurdle remains improving the current density by manufacturing more efficient materials.

Larbalestier said superconducting current has a tendency to percolate through materials, rather than sailing through unimpeded, resulting in huge losses of energy. "One of the tricks of the technology has been to explain and understand this problem of percolation," Larbalestier said.

The Applied Superconductivity Center is in a unique position to study the problem by using a novel technology called magneto-optical imaging. Developed and patented by ASC scientist Anatolii Polyanskii, the device allows researchers to literally create a visual image of current flow and barriers through microscopic filaments of superconducting material.

Larbalestier said the research found that much of the energy loss comes from two sources. Some current is blocked by grain boundaries made when the material is crystallized. But an even larger "limiting factor" are the man-made defects introduced by the manufacturing process.

The research team tested one of the best samples of superconducting "tape" on the market, made by American Superconductor Corporation in Massachusetts. The tape is about 2 millimeters thick, and filled with 85 filaments only a few microns thick. Electric current passes through this honeycomb of tiny wires.

ASC scientist Cai Xue-Yu tested individual filaments extracted from these tapes and revealed cracks that were once invisible to scientists. Larbalestier said that cracks are difficult to eliminate completely from manufacturing, but this research points directly to new fabrication techniques to reduce the problem.

The current state of the technology is "marvelous but crude," he said, and its potential is enormous. Efficient superconducting wires could replace copper wire and provide 10 times the energy density of copper. The advances could solve problems associated with power industry deregulation, by bringing more efficient power cables into city centers and placing transformers inside buildings instead of outside in power centers.

University of Wisconsin-Madison

Related Superconducting Articles from Brightsurf:

Rochester researchers synthesize room temperature superconducting material
Compressing simple molecular solids with hydrogen at extremely high pressures, University of Rochester scientists have, for the first time, created material that is superconducting at room temperature.

Topological superconducting phase protected by 1D local magnetic symmetries
Scientists from China and USA classified 1D gapped topological superconducting quantum wires with local magnetic symmetries (LMSs), in which the time-reversal symmetry is broken but its combinations with certain crystalline symmetries, such as MxT, C2zT, C4zT, and C6zT, are preserved.

Skoltech and MIPT scientists find a rule to predict new superconducting metal hydrides
The search for coveted high-temperature superconductors is going to get easier with a new 'law within a law' discovered by Skoltech and MIPT researchers and their colleagues, who figured out a link between an element's position in the Periodic Table and its potential to form a high-temperature superconducting hydride.

Scientists created an 'impossible' superconducting compound
Scientists have created new superconducting compounds of hydrogen and praseodymium, a rare-earth metal, one substance being quite a surprise from the perspective of classical chemistry.

Quantum technologies: New insights into superconducting processes
Superconductors are regarded as promising components for quantum computers, but so far they only function at very low temperatures.

Superconducting wind turbine chalks up first test success
A superconducting rotor has been successfully tested on an active wind turbine for the first time.

New design strategy can help improve layered superconducting materials
Tokyo, Japan - Scientists from Tokyo Metropolitan University have created a new layered superconducting material with a conducting layer made of bismuth, silver, tin, sulfur and selenium.

Controlling superconducting regions within an exotic metal
Researchers at EPFL have created a metallic microdevice in which they can define and tune patterns of superconductivity.

Evidence of anomalously large superconducting gap on topological surface state of β-Bi2Pd film
Hong Ding's group from the Institute of Physics, Chinese Academy of Science reported the superconducting gap of topological surface state is larger than that of bulk states in β-Bi2Pd thin films using in-situ angle-resolved photoemission spectroscopy and molecular beam epitaxy.

Two advances in understanding the role of 'charge stripes' in superconducting mate
In independent studies, two research teams report important advances in understanding how charge stripes might interact with superconductivity.

Read More: Superconducting News and Superconducting Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to