Chemical receptor key to fetal development

April 30, 2000

Possible connection to SIDS, preemie problems

A well-known chemical receptor in the brain associated with learning and memory probably also plays a key role in fetal development of the respiratory system, MIT researchers and colleagues will report in the May 1 Journal of Neuroscience.

The work indicates that "it would be prudent for pregnant women to avoid prolonged exposure to substances that affect the activity of this receptor," said Dr. Chi-Sang Poon, a Principal Research Scientist in the Harvard-MIT Division of Health Sciences and Technology (HST) and first author of the paper. Such substances include alcohol, PCP (angel dust), and some common anesthetic and analgesic drugs such as ketamine.

Mutant mice lacking the receptor "couldn't breathe or suckle well," said Dr. Poon, who noted that these symptoms are common in premature babies and are risk factors for Sudden Infant Death Syndrome. "Our study indicates a possible connection between abnormal receptor activity and problems in newborns," he said, although he stressed that more studies are needed to clarify this. Dr. Poon's coauthors are Zhongren Zhou, a former HST postdoctoral fellow, and Jean Champagnat of the Centre National de la Recherche Scientifique in France.

Surprise finding
In a twist that took the researchers by surprise, they also found that a lack of this receptor led to high amounts of longterm synaptic depression (LTD), an activity linked to learning and memory. The kicker: the increased LTD was found in the brainstem, an area of the brain not usually associated with such "higher-level" functions.

"Conventional wisdom is that the brainstem coordinates lower behaviors like breathing and other vital functions, while the forebrain handles intelligence," Dr. Poon explained. "The discovery in the brainstem of activity associated with learning supports my argument that there's also a lot of intelligence going on beneath our conscious being."

The N-methyl-D-aspartate (NMDA) receptor is key to the communication of a chemical signal between two nerve cells. That process, repeated between many cells, "is how a signal is propagated through the brain," Dr. Poon said. The effectiveness of the transmission between cells can change, or be modified, over time. "That plasticity is widely thought to be the basis for learning and memory," Dr. Poon said. "If the modification lasts for a long time, you remember!"

Because it is so involved in this process, the NMDA receptor has been of interest to scientists studying learning and memory. To that end, a few years ago MIT biology professor and Nobel laureate Susumu Tonegawa developed mutant mice lacking a key subunit of the NMDA receptor. "The idea was to see how knocking out the NMDA receptor affects the hippocampus on a cellular level, then how it affects learning and memory in the entire animal," Dr. Poon said.

Unexpected Hitch
There was an unexpected hitch: the animals died soon after birth. Professor Tonegawa and colleagues later solved the problem by restricting the NMDA knockout to a specific area of the brain rather than throughout the organ. "But I was always interested in exactly why the first animals were dying," Dr. Poon said. He and his colleagues explored a variety of potential reasons for the deaths.

Ultimately they found the answer: the lack of NMDA receptors during prenatal development led to fatal respiratory distress. (Normal newborn mice treated with drugs that block NMDA receptor activity did not have any respiratory problems.)

"This is the first indication that prenatal development of specific regions in the brain controlling vital functions is very much dependent on NMDA receptor activity, and a lack of NMDA receptor activity in the fetus could affect newborns' breathing after birth," Dr. Poon said. In addition, the unexpected increase in LTD in the brainstems of the mutant mice "shows that learning and memory at a subconscious level could profoundly influence our vital functions," Dr. Poon said.
The work was supported by the National Institutes of Health, the Office of Naval Research, and the Human Frontier Science Program.

Massachusetts Institute of Technology

Related Memory Articles from Brightsurf:

Memory of the Venus flytrap
In a study to be published in Nature Plants, a graduate student Mr.

Memory protein
When UC Santa Barbara materials scientist Omar Saleh and graduate student Ian Morgan sought to understand the mechanical behaviors of disordered proteins in the lab, they expected that after being stretched, one particular model protein would snap back instantaneously, like a rubber band.

Previously claimed memory boosting font 'Sans Forgetica' does not actually boost memory
It was previously claimed that the font Sans Forgetica could enhance people's memory for information, however researchers from the University of Warwick and the University of Waikato, New Zealand, have found after carrying out numerous experiments that the font does not enhance memory.

Memory boost with just one look
HRL Laboratories, LLC, researchers have published results showing that targeted transcranial electrical stimulation during slow-wave sleep can improve metamemories of specific episodes by 20% after only one viewing of the episode, compared to controls.

VR is not suited to visual memory?!
Toyohashi university of technology researcher and a research team at Tokyo Denki University have found that virtual reality (VR) may interfere with visual memory.

The genetic signature of memory
Despite their importance in memory, the human cortex and subcortex display a distinct collection of 'gene signatures.' The work recently published in eNeuro increases our understanding of how the brain creates memories and identifies potential genes for further investigation.

How long does memory last? For shape memory alloys, the longer the better
Scientists captured live action details of the phase transitions of shape memory alloys, giving them a better idea how to improve their properties for applications.

A NEAT discovery about memory
UAB researchers say over expression of NEAT1, an noncoding RNA, appears to diminish the ability of older brains to form memories.

Molecular memory can be used to increase the memory capacity of hard disks
Researchers at the University of Jyväskylä have taken part in an international British-Finnish-Chinese collaboration where the first molecule capable of remembering the direction of a magnetic above liquid nitrogen temperatures has been prepared and characterized.

Memory transferred between snails
Memories can be transferred between organisms by extracting ribonucleic acid (RNA) from a trained animal and injecting it into an untrained animal, as demonstrated in a study of sea snails published in eNeuro.

Read More: Memory News and Memory Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to