Operation of self-aiming camera modeled on how part of brain works

April 30, 2001

CHAMPAIGN, Ill. -- By recognizing both visual and audio cues, a self-aiming camera being developed at the University of Illinois can tell the difference between an airplane and an albatross.

The camera system, which could find use as an intelligent sentinel in sensitive military applications, originally was built to demonstrate the versatility of a simulated neural network, which the researchers modeled after the superior colliculus of the human brain.

"The superior colliculus serves as the visual reflex center of the brain," said Sylvian Ray, a UI professor of computer science and a researcher at the Beckman Institute for Advanced Science and Technology. "It is the primary agent for deciding which direction to turn the head in response to sensory stimuli such as visual and auditory cues."

To demonstrate the effectiveness of their neural network, Ray and his colleagues - molecular and integrative physiology professor Thomas Anastasio, postdoctoral research associate Paul Patton, and graduate research assistants Samarth Swarup and Alejandro Sarmiento - constructed a camera and microphone system that supplies visual and auditory cues to the model and responds to its directives.

One camera looks for motion by comparing successive video frames while the system monitors audio signals from a pair of omnidirectional microphones. A sound-location algorithm analyzes the sounds and sends the information to the neural network. The model then determines the correct position and moves a second camera, equipped with a long-focus lens, to acquire the target. This target image can be transmitted to a human operator for further analysis.

"While the system can be attracted by either sight or sound, the combination of the two offers a much stronger stimulus," Ray said. "By using look-up libraries of sight and sound, the system can differentiate between an aircraft on the horizon and a flock of birds." During infancy, the superior colliculus helps a baby's brain associate external direction with an internal visual reference grid - mapping a mother's moving lips to the sound of her voice, for example. In a similar fashion, the researchers' model learns to align its sound-source location processing with an embedded visual map.

"As the system learns to correctly locate both sound and visual sources, it also learns what types of objects are preferred targets," Ray said. "We want to teach it to ignore common objects and focus on unusual sounds or visual motions."

Besides the obvious security applications, the self-aiming camera could also find applications in long-distance learning, Ray said. "One camera could follow the speaker. Another camera could point at the audience, and automatically zero in on a student raising a hand to ask a question."
The work was originally funded by a UI Critical Research Initiatives grant. Additional funding to develop the intelligent sentinel concept came from the Office of Naval Research.

University of Illinois at Urbana-Champaign

Related Brain Articles from Brightsurf:

Glioblastoma nanomedicine crosses into brain in mice, eradicates recurring brain cancer
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier in mice could deliver cancer-killing drugs directly to malignant brain tumors, new research from the University of Michigan shows.

Children with asymptomatic brain bleeds as newborns show normal brain development at age 2
A study by UNC researchers finds that neurodevelopmental scores and gray matter volumes at age two years did not differ between children who had MRI-confirmed asymptomatic subdural hemorrhages when they were neonates, compared to children with no history of subdural hemorrhage.

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.

Read More: Brain News and Brain Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.