Puzzling plankton yield secrets to role in evolution/global photosynthesis

April 30, 2007

WALNUT CREEK, CA -- The analysis of DNA sequences from tiny green algae have provided new insights into the mystery of how new species of plankton evolve--and further highlights their critical role in managing the global cycling of carbon. These findings, by a group led by the DOE Joint Genome Institute (DOE JGI); the Scripps Institution of Oceanography, University of California, San Diego; and the Pierre & Marie Curie University, were published this week in the Proceedings of the National Academy of Sciences (PNAS).

Ocean-dwelling phytoplankton from the genus Ostreococcus emerge at the primitive root of the green plant lineage, dating back nearly 1.5 billion years. Today, these microscopic, free-living creatures, among the smallest eukaryotes ever characterized, barely a micron in diameter, contribute to a significant share of the world's total photosynthetic activity. These "picophytoplankton" also exhibit great diversity that contrasts sharply with the dearth of ecological niches available to them in aquatic ecosystems. This observation, known as the "paradox of the plankton," has long puzzled biologists.

Plumbing the depths of molecular-level information of related species, genomics offers a novel glimpse into this paradox. The researchers compared the genomes of two Ostreococcus species, O. lucimarinus and O. tauri, and saw dramatic changes in genome structure and metabolic capabilities.

"We found several striking features of genome organization," said DOE JGI's Igor Grigoriev, the PNAS paper's senior author. "Overlapping genes conserved across the species may enable them to cross-regulate their expression, while species-specific chromosomes with horizontally transferred genes can account for changes in the cell surface to adapt to different ecological niches." Grigoriev and his colleagues noted the abundance of selenium-rich proteins that surfaced in their analysis, which he said allows the organisms to horde nutrients and reduced their appetite for iron--an adaptive process in Ostreococcus.

"This work builds on the community's emerging understanding about how carbon fixation is carried out by picoplankton," said Brian Palenik, lead author and researcher at the Scripps Institution of Oceanography, University of California, San Diego.

"From an applied perspective, we are learning some of the tricks nature has employed to 'engineer' an extremely small eukaryote to thrive in nature--which may well find applications in bioengineering," said Palenik. "It was particularly interesting to see the predicted use of selenium-containing enzymes as one of the tricks to maintain such tiny cells. There are many mechanisms that can account for species formation in photosynthetic phytoplankton, and this is just one of the major pieces to this long-standing puzzle for biologists."

"Assimilation of atmospheric CO2 by marine phytoplankton is a global-scale process that is responsible for about half of the biosphere net primary production," said collaborator and co-author Hervé Moreau of the Pierre & Marie Curie University Oceanic Observatory in Banyuls-sur-mer, France. "This active absorption of hundreds of millions of tons of carbon per day is essential for maintaining the control of the planet's climate by counteracting greenhouse effects due to human activities. Clearly, this storage capacity is affected by changes in the photosynthetic efficiency of the algae, which in turn is linked to the environmental conditions experienced by these organisms in their environment."

The ecology of picoeukaryotes, said Moreau, has thus become an intense field of investigation over the last decade as these microalgae, although representing a minor component of the plankton, nevertheless play major roles in oceanic biomass production.

"With even more picoplankton genomes in the sequencing queue at DOE JGI, we're positioned to secure a better grasp on the mechanisms of species adaptation and the great diversity of biological pathways operating in the oceans," said Grigoriev. "This will also enable us to predict the roles of these organisms in contributing to primary marine productivity."
-end-
The DOE Joint Genome Institute, supported by the DOE Office of Science, unites the expertise of five national laboratories, Lawrence Berkeley, Lawrence Livermore, Los Alamos, Oak Ridge, and Pacific Northwest, along with the Stanford Human Genome Center to advance genomics in support of the DOE mission related to clean energy generation and environmental characterization and clean-up. DOE JGI's Walnut Creek, Calif. Production Genomics Facility provides integrated high-throughput sequencing and computational analysis that enable systems-based scientific approaches to these challenges. Additional information about DOE JGI can be found at: http://www.jgi.doe.gov/.

DOE/Joint Genome Institute

Related Algae Articles from Brightsurf:

Sprat, mollusks and algae: What a diet of the future might look like
Rethinking what we eat is essential if we hope to nourish ourselves sustainably and mind the climate.

Ocean algae get 'coup de grace' from viruses
Scientists have long believed that ocean viruses always quickly kill algae, but Rutgers-led research shows they live in harmony with algae and viruses provide a 'coup de grace' only when blooms of algae are already stressed and dying.

New science behind algae-based flip-flops
Sustainable flip-flops: A team of UC San Diego researchers has formulated polyurethane foams made from algae oil to meet commercial specifications for midsole shoes and the foot-bed of flip-flops.

Battling harmful algae blooms
In two separate studies, the University of Delaware's Kathryn Coyne is looking at why one species of algae has some strains that can cause fish kills and others that are non-toxic, while examining an algicidal bacterium found in Delaware's Inland Bays that could provide an environmentally-friendly approach to combatting algae blooms.

Algae as living biocatalysts for a green industry
Many substances that we use every day only work in the right 3D structure.

Algae in the oceans often steal genes from bacteria
Algae in the oceans often steal genes from bacteria to gain beneficial attributes, such as the ability to tolerate stressful environments or break down carbohydrates for food, according to a Rutgers co-authored study.

Algae team rosters could help ID 'super corals'
U.S. and Australian researchers have found a potential tool for identifying stress-tolerant ''super corals.'' In experiments that simulated climate change stress, researchers found corals that best survived had symbiotic algae communities with similar features.

Algae shown to improve gastrointestinal health
A green, single-celled organism called Chlamydomonas reinhardtii has served as a model species for topics spanning algae-based biofuels to plant evolution.

How do corals make the most of their symbiotic algae?
Corals depend on their symbiotic relationships with the algae that they host.

Algae as a resource: Chemical tricks from the sea
The chemical process by which bacteria break down algae into an energy source for the marine food chain, has been unknown - until now.

Read More: Algae News and Algae Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.