Arctic ice retreating more quickly than computer models project

April 30, 2007

BOULDER--Arctic sea ice is melting at a significantly faster rate than projected by even the most advanced computer models, a new study concludes. The research, by scientists at the National Center for Atmospheric Research (NCAR) and the University of Colorado's National Snow and Ice Data Center (NSIDC), shows that the Arctic's ice cover is retreating more rapidly than estimated by any of the 18 computer models used by the Intergovernmental Panel on Climate Change (IPCC) in preparing its 2007 assessments.

The study, "Arctic Sea Ice Decline: Faster Than Forecast?" will appear tomorrow in the online edition of Geophysical Research Letters. It was led by Julienne Stroeve of the NSIDC and funded by the National Science Foundation, which is NCAR's principal sponsor, and by NASA.

"While the ice is disappearing faster than the computer models indicate, both observations and the models point in the same direction: the Arctic is losing ice at an increasingly rapid pace and the impact of greenhouse gases is growing," says NCAR scientist Marika Holland, one of the study's co-authors.

The authors compared model simulations of past climate with observations by satellites and other instruments. They found that, on average, the models simulated a loss in September ice cover of 2.5 percent per decade from 1953 to 2006. The fastest rate of September retreat in any individual model was 5.4 percent per decade. (September marks the yearly minimum of sea ice in the Arctic.) But newly available data sets, blending early aircraft and ship reports with more recent satellite measurements that are considered more reliable than the earlier records, show that the September ice actually declined at a rate of about 7.8 percent per decade during the 1953-2006 period.

"This suggests that current model projections may in fact provide a conservative estimate of future Arctic change, and that the summer Arctic sea ice may disappear considerably earlier than IPCC projections," says Stroeve.

Thirty years ahead of schedule

The study indicates that, because of the disparity between the computer models and actual observations, the shrinking of summertime ice is about 30 years ahead of the climate model projections. As a result, the Arctic could be seasonally free of sea ice earlier than the IPCC- projected timeframe of any time from 2050 to well beyond 2100.

The authors speculate that the computer models may fail to capture the full impact of increased carbon dioxide and other greenhouse gases in the atmosphere. Whereas the models indicate that about half of the ice loss from 1979 to 2006 was due to increased greenhouse gases, and the other half due to natural variations in the climate system, the new study indicates that greenhouse gases may be playing a significantly greater role.

There are a number of factors that may lead to the low rates of simulated sea ice loss. Several models overestimate the thickness of the present-day sea ice and the models may also fail to fully capture changes in atmospheric and oceanic circulation that transport heat to polar regions.

March ice

Although the loss of ice for March is far less dramatic than the September loss, the models underestimate it by a wide margin as well. The study concludes that the actual rate of sea ice loss in March, which averaged about 1.8 percent per decade in the 1953-2006 period, was three times larger than the mean from the computer models. March is typically the month when Arctic sea ice is at its most extensive.

The Arctic is especially sensitive to climate change partly because regions of sea ice, which reflect sunlight back into space and provide a cooling impact, are disappearing. In contrast, darker areas of open water, which are expanding, absorb sunlight and increase temperatures. This feedback loop has played a role in the increasingly rapid loss of ice in recent years, which accelerated to 9.1 percent per decade from 1979 to 2006 according to satellite observations.
-end-
Walt Meier, Ted Scambos, and Mark Serreze, all at NSIDC, also co-authored the study.

The University Corporation for Atmospheric Research manages the National Center for Atmospheric Research under primary sponsorship by the National Science Foundation (NSF). Opinions, findings, conclusions, or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

Note to Editors

Reporters (only) who want a copy of the article should contact Jonathan Lifland at jlifland@agu.org or 202-777-7535.

Title: Arctic Sea Ice Decline: Faster Than Forecast?
Authors: Juliene Stroeve, Marika Holland, Walt Meier, Ted Scambos, Mark Serreze
Publication: Geophysical Research Letters

Images are available at http://www.ucar.edu/news/releases/2007/seaice.shtml

On the Web:
Resources for journalists: http://www.ucar.edu/news/journalists.jsp
Read this and past releases or sign up for e-mail delivery: http://www.ucar.edu/news/releases

National Center for Atmospheric Research/University Corporation for Atmospheric Research

Related Climate Change Articles from Brightsurf:

Are climate scientists being too cautious when linking extreme weather to climate change?
Climate science has focused on avoiding false alarms when linking extreme events to climate change.

Mysterious climate change
New research findings underline the crucial role that sea ice throughout the Southern Ocean played for atmospheric CO2 in times of rapid climate change in the past.

Mapping the path of climate change
Predicting a major transition, such as climate change, is extremely difficult, but the probabilistic framework developed by the authors is the first step in identifying the path between a shift in two environmental states.

Small change for climate change: Time to increase research funding to save the world
A new study shows that there is a huge disproportion in the level of funding for social science research into the greatest challenge in combating global warming -- how to get individuals and societies to overcome ingrained human habits to make the changes necessary to mitigate climate change.

Sub-national 'climate clubs' could offer key to combating climate change
'Climate clubs' offering membership for sub-national states, in addition to just countries, could speed up progress towards a globally harmonized climate change policy, which in turn offers a way to achieve stronger climate policies in all countries.

Review of Chinese atmospheric science research over the past 70 years: Climate and climate change
Over the past 70 years since the foundation of the People's Republic of China, Chinese scientists have made great contributions to various fields in the research of atmospheric sciences, which attracted worldwide attention.

A CERN for climate change
In a Perspective article appearing in this week's Proceedings of the National Academy of Sciences, Tim Palmer (Oxford University), and Bjorn Stevens (Max Planck Society), critically reflect on the present state of Earth system modelling.

Fairy-wrens change breeding habits to cope with climate change
Warmer temperatures linked to climate change are having a big impact on the breeding habits of one of Australia's most recognisable bird species, according to researchers at The Australian National University (ANU).

Believing in climate change doesn't mean you are preparing for climate change, study finds
Notre Dame researchers found that although coastal homeowners may perceive a worsening of climate change-related hazards, these attitudes are largely unrelated to a homeowner's expectations of actual home damage.

Older forests resist change -- climate change, that is
Older forests in eastern North America are less vulnerable to climate change than younger forests, particularly for carbon storage, timber production, and biodiversity, new research finds.

Read More: Climate Change News and Climate Change Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.