Nav: Home

Recycler protein helps prevent disease

April 30, 2009

Recycling is important not only on a global scale, but also at the cellular level, since key molecules tend to be available in limited numbers. This means a cell needs to have efficient recycling mechanisms. Researchers at the European Molecular Biology Laboratory (EMBL) and Heidelberg University, Germany, have now uncovered the first step in the recycling of a crucial molecular tag which ensures the instructions encoded in our genes are correctly carried out. The study, published this week in the journal Cell, sheds new light on a proof-reading process that helps protect us from genetic diseases.

The translation of information from gene to protein in our cells is very important, but also error-prone. As errors can lead to diseases, several control mechanisms check for mistakes along the way. One such mechanism, called nonsense-mediated decay (NMD), is based on a molecular tag that is attached to messenger RNAs, an intermediate step in the translation from DNA to protein. The tag, called exon-junction complex (EJC), tells the NMD machinery if an RNA is faulty, potentially dangerous and should be degraded. Overall, a cell would need to mark around 400,000 sites with EJCs, but it only has 10,000 copies of one of the marker's components. This means EJCs must be broken down as soon as possible, so that their components can be re-used.

Researchers in the groups of Matthias Hentze, associate director of EMBL, and Andreas Kulozik at the University Clinic Heidelberg discovered that a protein called PYM is responsible for the disassembly and recycling of EJCs.

"Our results were very surprising," says Niels Gehring, who carried out the research. "Everybody had assumed that ribosomes, the large structures that carry out protein assembly, simply iron out the EJCs as they pass. Now we see that this is not quite right, because without PYM EJC disassembly is impaired."

Although PYM can be found on its own in the cell, it tends to associate with ribosomes. This explains why - and how - EJCs are removed when the ribosome goes by, and could also ensure that they are not removed too early. If that happened, NMD would be compromised, as the proofreading machinery would have no markers to guide it. This in turn could have wider consequences, as NMD influences how diseases such as thalassaemia, Duchenne's muscular dystrophy and cystic fibrosis manifest themselves.

"The new insights fill an important gap in the basic understanding of a vital cellular process," says Hentze. "But they also have medical implications. Ultimately we would like to find ways to modulate NMD pharmacologically to influence the development and course of genetic diseases."

The research was conducted in the joint Molecular Medicine Partnership Unit (MMPU), a collaboration between EMBL and Heidelberg University. "The MMPU bridges the gap between basic and clinical research. The constant cross-fertilisation between biologists and medical scientists guides our studies and often leads to discoveries that are applicable to medicine," says Kulozik, medical director and professor of pediatrics at Heidelberg University.
-end-


European Molecular Biology Laboratory

Related Protein Articles:

Hi-res view of protein complex shows how it breaks up protein tangles
A new, high-resolution view of the structure of Hsp104 (heat shock protein 104), a natural yeast protein nanomachine with six subunits, may show news ways to dismantle harmful protein clumps in disease.
Breaking the protein-DNA bond
A new Northwestern University study finds that unbound proteins in a cell break up protein-DNA bonds as they compete for the single-binding site.
FASEB Science Research Conference: Protein Kinases and Protein Phosphorylation
This conference focuses on the biology of protein kinases and phosphorylation signaling.
Largest resource of human protein-protein interactions can help interpret genomic data
An international research team has developed the largest database of protein-to-protein interaction networks, a resource that can illuminate how numerous disease-associated genes contribute to disease development and progression.
STAT2: Much more than an antiviral protein
A protein known for guarding against viral infections leads a double life, new research shows, and can interfere with cell growth and the defense against parasites.
A protein makes the difference
It is well-established knowledge that blood vessels foster the growth of tumors.
Nuclear protein causes neuroblastoma to become more aggressive
Aggressive forms of neuroblastoma contain a specific protein in their cells' nuclei that is not found in the nuclei of more benign forms of the cancer, and the discovery, made through research from the University of Rochester Medical Center, could lead to new forms of targeted therapy.
How a protein could become the next big sweetener
High-fructose corn syrup and sugar are on the outs with calorie-wary consumers.
High animal protein intake associated with higher, plant protein with lower mortality rate
The largest study to examine the effects of different sources of dietary protein found that a high intake of proteins from animal sources -- particularly processed and unprocessed red meats -- was associated with a higher mortality rate, while a high intake of protein from plant sources was associated with a lower risk of death.
Protein in, ammonia out
A recent study has compiled and analyzed data from 25 previous studies.

Related Protein Reading:

Proteins (Explore the molecules of life)
by Tali Lavy (Author), Ofir Corcos (Illustrator)

Protein Power: The High-Protein/Low Carbohydrate Way to Lose Weight, Feel Fit, and Boost Your Health-in Just Weeks!
by Michael R. Eades (Author), Mary Dan Eades (Author)

The Protein Power Lifeplan
by Michael R. Eades (Author), Mary Dan Eades (Author)

Protein Sparing Modified Fast Cookbook
by Maria Emmerich (Author), Craig Emmerich (Author)

Proteins: Biochemistry and Biotechnology
by Gary Walsh (Author)

Plant-Protein Recipes That You'll Love: Enjoy the goodness and deliciousness of 150+ healthy plant-protein recipes!
by Carina Wolff (Author)

Proteins: Structures and Molecular Properties
by Thomas E. Creighton (Author)

Clean Protein: The Revolution that Will Reshape Your Body, Boost Your Energy—and Save Our Planet
by Kathy Freston (Author), Bruce Friedrich (Author)

Protein Actions: Principles and Modeling
by Ivet Bahar (Author), Robert L. Jernigan (Author), Ken A. Dill (Author)

Protein Purification, Second Edition (Basics (Garland Science))
by Philip Bonner (Author)

Best Science Podcasts 2018

We have hand picked the best science podcasts for 2018. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

The Right To Speak
Should all speech, even the most offensive, be allowed on college campuses? And is hearing from those we deeply disagree with ... worth it? This hour, TED speakers explore the debate over free speech. Guests include recent college graduate Zachary Wood, political scientist Jeffrey Howard, novelist Elif Shafak, and journalist and author James Kirchick.
Now Playing: Science for the People

#486 Volcanoes
This week we're talking volcanoes. Because there are few things that fascinate us more than the amazing, unstoppable power of an erupting volcano. First, Jessica Johnson takes us through the latest activity from the Kilauea volcano in Hawaii to help us understand what's happening with this headline-grabbing volcano. And Janine Krippner joins us to highlight some of the lesser-known volcanoes that can be found in the USA, the different kinds of eruptions we might one day see at them, and how damaging they have the potential to be. Related links: Kilauea status report at USGS A beginner's guide to Hawaii's otherworldly...