NC State wins ARPA-E grant to study extremophile production of biofuels

April 30, 2010

The U.S. Department of Energy's Advanced Research Projects Agency (ARPA-E) has awarded a grant for more than $2.7 million to North Carolina State University to support research into the creation of biofuels using microbial organisms, called extremophiles, that live in high-temperature environments.

"Most biofuels, such as ethanol and butanol, are created by fermenting sugars produced by plants through photosynthesis. Our project would cut out the middle man by using organisms that utilize carbon dioxide and hydrogen to produce biofuels directly," says Dr. Robert Kelly, the principal investigator under the grant and Alcoa Professor of Chemical and Biomolecular Engineering and director of the Biotechnology Program at NC State. Kelly will be performing the research funded by the grant in conjunction with co-principal investigator Dr. Michael Adams of the University of Georgia.

The grant will fund research revolving around extremophiles - primitive organisms found in fresh water or saltwater that evolved before photosynthetic organisms, and which are found in hydrothermal environments with temperatures ranging from 75 to 100 degrees Celsius (167 to 212 degrees Fahrenheit). Specifically, Kelly and Adams will be working with the microbes Metallosphaera sedula and Pyrococcus furiosus.

These microbes take carbon dioxide from the environment and produce complex molecules, including one called acetyl-CoA that can serve as a building block for biofuels. The researchers plan to genetically engineer Pyrococcus to include elements of Metallosphaera, creating a "superbug" that would be capable of taking carbon dioxide and hydrogen and producing biofuels. The researchers hope to engineer the microbes to produce butanol.

"One of the advantages of using these microbes is that they do well at high temperatures, and biofuel facilities will need to use high-temperatures to distill biofuels from the water where the organisms live," Kelly says. "Because of their heat tolerance, the microbes will continue to thrive even as the biofuels are being distilled, which makes the process significantly more efficient."

Furthermore, Kelly says, the microbes do not need light. That means that a facility that uses the microbes to create biofuels could be set up anywhere - even underground.

The ARPA-E grant is for $2.729 million over three years. ARPA-E was created in 2007 to fund projects that foster energy independence, reduce energy-related emissions, improve energy efficiency and promote U.S. leadership in the development and use of advanced energy technologies.

North Carolina State University

Related Hydrogen Articles from Brightsurf:

Solar hydrogen: let's consider the stability of photoelectrodes
As part of an international collaboration, a team at the HZB has examined the corrosion processes of high-quality BiVO4 photoelectrodes using different state-of-the-art characterisation methods.

Hydrogen vehicles might soon become the global norm
Roughly one billion cars and trucks zoom about the world's roadways.

Hydrogen economy with mass production of high-purity hydrogen from ammonia
The Korea Institute of Science and Technology (KIST) has made an announcement about the technology to extract high-purity hydrogen from ammonia and generate electric power in conjunction with a fuel cell developed by a team led by Young Suk Jo and Chang Won Yoon from the Center for Hydrogen and Fuel Cell Research.

Superconductivity: It's hydrogen's fault
Last summer, it was discovered that there are promising superconductors in a special class of materials, the so-called nickelates.

Hydrogen energy at the root of life
A team of international researchers in Germany, France and Japan is making progress on answering the question of the origin of life.

Hydrogen alarm for remote hydrogen leak detection
Tomsk Polytechnic University jointly with the University of Chemistry and Technology of Prague proposed new sensors based on widely available optical fiber to ensure accurate detection of hydrogen molecules in the air.

Preparing for the hydrogen economy
In a world first, University of Sydney researchers have found evidence of how hydrogen causes embrittlement of steels.

Hydrogen boride nanosheets: A promising material for hydrogen carrier
Researchers at Tokyo Institute of Technology, University of Tsukuba, and colleagues in Japan report a promising hydrogen carrier in the form of hydrogen boride nanosheets.

World's fastest hydrogen sensor could pave the way for clean hydrogen energy
Hydrogen is a clean and renewable energy carrier that can power vehicles, with water as the only emission.

Chemical hydrogen storage system
Hydrogen is a highly attractive, but also highly explosive energy carrier, which requires safe, lightweight and cheap storage as well as transportation systems.

Read More: Hydrogen News and Hydrogen Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to