Molecular imaging can identify a potentially deadly blood vessel condition, research suggests

April 30, 2010

Reston, Va.--According to research published in the May issue of The Journal of Nuclear Medicine, molecular imaging can help physicians identify aortic dissection--an often fatal blood vessel condition--and help guide treatment. Aortic dissection occurs when a tear in the wall of the aorta causes blood to flow between the layers of the wall of the aorta and force the layers apart.

"Many conventional forms of imaging are not able to clearly differentiate between acute and chronic dissection," said Hans-Henning Eckstein, M.D., Ph.D., a professor at the Technical University of Munich in Germany and corresponding author of "Imaging of Acute and Chronic Aortic Dissection by 18F-FDG PET/CT." "It is critical to patients' survival that doctors are able to verify acute or exclude chronic aortic dissection so they can decide the best course of treatment--whether that means rushing the patient to surgery in some cases or using beta blockers to lower the blood pressure."

Aortic dissection is the tenth leading cause of death in Western societies. It is the second most frequent cause of acute chest pain. In 2003, actor John Ritter died suddenly of complications from aortic dissection. Ritter's doctors were not able to identify his true condition until just before his death.

In clinically unclear cases, use of an advanced imaging technique--positron emission tomography (PET) with the imaging agent fluorodeoxyglucose (FDG) and computed tomography (CT)--may help determine the age of an aortic dissection, the degree of risk and the need for surgery. Articles by researchers in Japan, Germany and the United Kingdom reported on the results of two studies that used FDG PET/CT to diagnose aortic dissection.

In the Munich study, researchers examined patients with symptoms of aortic dissection and patients with chronic asymptomatic dissection using FDG PET/CT to acquire images of the affected area, just above the heart. These images were studied to determine the difference between the two forms of aortic dissection. The researchers reported that acute dissection of the aortic wall led to elevated metabolic activity in freshly lacerated segments of the aortic wall, while stable chronic aortic dissection showed no increased metabolic activity.

Researchers speculate that increased metabolic activity in cases of acute aortic dissection is due to repair mechanisms of the aortic wall injury, causing cell activation and accumulation, and that low metabolic activity in chronic aortic dissection is due to scar tissue. Further studies are needed to prove these hypotheses.

In another study reported in JNM, researchers in Japan found that greater metabolic activity in acute aortic dissection was significantly associated with increased risk for rupture and progression. The study shows that FDG PET/CT may be used to improve patient management, although more studies are still needed to clarify its role in the clinical setting.

"Usually, it is difficult to predict poor outcome for patients receiving medical treatment for acute aortic dissection," said Toyoaki Murohara, M.D., Ph.D., F.A.H.A., a professor at Nagoya University Graduate School of Medicine in Japan and one of the authors of the study. "This study will give us new information to evaluate the degree of the patients' illness."

"Early diagnosis and treatment are essential for survival of patients with this rare and often fatal disease," said James H.F. Rudd, M.D., Ph.D., M.R.C.P., a researcher and consultant cardiologist at the University of Cambridge, United Kingdom, who authored an invited perspective article in JNM on the role of 18F-FDG PET in aortic dissection. "Although further studies are needed, this research suggests that FDG PET imaging might be used to identify patients who are at a very high risk of complications, allowing them to be fast-tracked to surgery."
Authors of "Imaging of Acute and Chronic Aortic Dissection by 18F-FDG PET/CT" include: Christian Reeps, Jaroslav Pelisek, Manuela Gurdan, Alexander Zimmermann, Stefan Ockert, and Hans-Henning Eckstein, of the Clinic for Vascular Surgery, Klinikum-rechts-der-Isar, Technische Universität München, Munich, Germany; Ralph A. Bundschuh and Markus Essler, Clinic for Nuclear Medicine, Klinikum-rechts-der-Isar, Technische Universität München, Munich, Germany; and Martin Dobritz, Institute for Radiology, Klinikum-rechts-der-Isar, Technische Universität München, Munich, Germany.

Authors of "Uptake of F-18 Fluorodeoxyglucose in Acute Aortic Dissection; a Determinant of Unfavorable Outcome" include: Kimihiko Kato and Tetsuo Fujimaki, Department of Cardiovascular Medicine, Gifu Prefectural Tajimi Hospital, Tajimi, Japan; Akiko Nishio, Hisashi Usami, Department of Radiology, Nagoya University, Graduate School of Medicine, Nagoya, Japan; and Noriyuki Kato, Department of Radiology, Mie University, Graduate School of Medicine, Tsu, Japan; and Toyoaki Murohara, Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan.

Please visit the SNM Newsroom to download the PDFs of the studies. To schedule an interview with the researchers, please contact Amy Shaw at (703) 652-6773 or, or Jane Kollmer at (703) 326-1184 or Current and past issues of The Journal of Nuclear Medicine can be found online at

About SNM--Advancing Molecular Imaging and Therapy

SNM is an international scientific and medical organization dedicated to raising public awareness about what molecular imaging is and how it can help provide patients with the best health care possible. SNM members specialize in molecular imaging, a vital element of today's medical practice that adds an additional dimension to diagnosis, changing the way common and devastating diseases are understood and treated.

SNM's more than 17,000 members set the standard for molecular imaging and nuclear medicine practice by creating guidelines, sharing information through journals and meetings and leading advocacy on key issues that affect molecular imaging and therapy research and practice. For more information, visit

Society of Nuclear Medicine

Related Molecular Imaging Articles from Brightsurf:

New technique offers higher resolution molecular imaging and analysis
The new approach from Northwestern Engineering could help researchers understand more complicated biomolecular interactions and characterize cells and diseases at the single-molecule level.

Molecular imaging offers insight into therapy outcomes for neuroendocrine tumor patients
A new proof-of-concept study published in the May issue of The Journal of Nuclear Medicine has demonstrated that molecular imaging can be used for identifying early response to 177Lu-DOTATATE treatment in neuroendocrine tumor patients.

Non-invasive imaging method spots cancer at the molecular level
Researchers for the first time have combined a powerful microscopy technique with automated image analysis algorithms to distinguish between healthy and metastatic cancerous tissue without relying on invasive biopsies or the use of a contrast dye.

Molecular imaging suggests smokers may have impaired neuroimmune function
Research presented at the 2019 Annual Meeting of the Society of Nuclear Medicine and Molecular Imaging (SNM MI) shows preliminary evidence that tobacco smokers may have reduced neuroimmune function compared with nonsmokers.

Novel noninvasive molecular imaging for monitoring rheumatoid arthritis
A first-in-human Phase 1/Phase II study demonstrates that intravenous administration of the radiopharmaceutical imaging agent technetium-99m (99mTc) tilmanocept promises to be a safe, well-tolerated, noninvasive means of monitoring rheumatoid arthritis disease activity.

Improving molecular imaging using a deep learning approach
Generating comprehensive molecular images of organs and tumors in living organisms can be performed at ultra-fast speed using a new deep learning approach to image reconstruction developed by researchers at Rensselaer Polytechnic Institute.

Nanoplatform developed with three molecular imaging modalities for tumor diagnosis
Nanotechnology and biotechnology are bringing us increasingly closer to personalised cancer treatment.

Study suggests molecular imaging strategy for determining molecular classifications of NSCLC
Recent findings suggest a novel positron emission tomography (PET) imaging approach determining epidermal growth factor receptor (EGFR) mutation status for improved lung cancer patient management.

New imaging technique able to watch molecular dynamics of neurodegenerative diseases
Researchers have developed a fast and practical molecular-scale imaging technique that could let scientists view never-before-seen dynamics of biological processes involved in neurodegenerative diseases such as Alzheimer's disease and multiple sclerosis.

Combined optical and molecular imaging could guide breast-conserving surgery
Breast-conserving surgery is the primary treatment for early-stage breast cancer, but more accurate techniques are needed to assess resection margins during surgery to avoid the need for follow-up surgeries.

Read More: Molecular Imaging News and Molecular Imaging Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to