New research by UCR physicists could help develop gamma ray lasers and produce fusion power

April 30, 2010

RIVERSIDE, Calif. - Positronium is a short-lived system in which an electron and its anti-particle are bound together. In 2007, physicists at the University of California, Riverside created molecular positronium, a brand-new substance, in the laboratory. Now they have succeeded in isolating for the first time a sample of spin polarized positronium atoms.

Study results appear this week in the journal Physical Review Letters.

Spin is a fundamental and intrinsic property of an electron, and refers to the electron's angular momentum. Spin polarized atoms are atoms that are all in the same spin state. A collection of spin polarized positronium atoms is needed to make a special form of matter, called the Bose-Einstein condensate (BEC). The BEC, predicted in 1924 and created in 1995, allows scientists to study atoms in a unique manner.

"We achieved our result by increasing the density of the positronium atoms in our lab experiment," said David Cassidy, the lead author of the research paper and an assistant researcher working in the laboratory of Allen Mills, a professor of physics. "At such a high density, positronium atoms get annihilated simply by interacting with each other. But it turns out that not all the positronium atoms get annihilated under these conditions."

Cassidy explained that positronium atoms come in two types - say, an up type and a down type. The positronium atoms are only annihilated when an up type meets a down type. Two atoms of the same type do not affect each other.

"So if you have 50 percent ups and 50 percent downs and you squeeze them all together they will totally annihilate and turn into gamma rays," he said. "But if you have, for example, about 66 percent ups and 33 percent downs, then only half of the ups will be destroyed. You will get a load of gamma rays - but in the end you will be left with only one type of atom - in this case, up atoms.

"This is an important development for making the BEC," Cassidy said, "because you have effectively purified your sample of positronium. And you need a pure collection of spin aligned atoms to make the BEC."

When atoms are in the BEC state, they are essentially stopped (or they move extremely slowly), facilitating their study. Non-BEC atoms on the other hand whiz around at very high speeds, making them harder to study.

"There are fundamental processes that can be looked at in new ways when you have matter in the BEC state," Mills said. "Having Bose-condensed atoms makes it easier to probe the way they interact under certain conditions. Moreover, to have motionless positronium atoms is an important aspect for making something called a gamma ray laser, which could have military and numerous scientific applications."

According to Mills and Cassidy, the new research could lead also to the production of fusion power, which is power generated by nuclear fusion reactions.

"The eventual production of a positronium condensate could help us understand why the universe is made of matter and not antimatter or just pure energy," Cassidy said. "It could also one day help us measure the gravitational interaction of antimatter with matter. At present, nobody knows for sure if antimatter falls up or down."
-end-
The National Science Foundation and the U.S. Air Force supported the research.

Cassidy and Mills were joined in the study by Vincent Meligne, a graduate student in Mills's lab.

The University of California, Riverside (www.ucr.edu) is a doctoral research university, a living laboratory for groundbreaking exploration of issues critical to Inland Southern California, the state and communities around the world. Reflecting California's diverse culture, UCR's enrollment of about 18,000 is expected to grow to 21,000 students by 2020. The campus is planning a medical school and has reached the heart of the Coachella Valley by way of the UCR Palm Desert Graduate Center. The campus has an annual statewide economic impact of more than $1 billion.

A broadcast studio with fiber cable to the AT&T Hollywood hub is available for live or taped interviews. To learn more, call (951) UCR-NEWS.


University of California - Riverside

Related Antimatter Articles from Brightsurf:

Timing the life of antimatter particles may lead to better cancer treatment
Experts in Japan have devised a simple way to glean more detailed information out of standard medical imaging scans.

New calculation refines comparison of matter with antimatter
An international collaboration of theoretical physicists has published a new calculation relevant to the search for an explanation of the predominance of matter over antimatter in our universe.

Scientists make step towards understanding the universe
Physicists from the University of Sheffield have taken a step towards understanding why the universe is made of mostly matter and not antimatter, by studying the difference between the two.

Where did the antimatter go? Neutrinos shed promising new light
We live in a world of matter -- because matter overtook antimatter, though they were both created in equal amounts when our universe began.

T2K insight into the origin of the universe
Lancaster physicists working on the T2K major international experiment in Japan are closing in on the mystery of why there is so much matter in the universe, and so little antimatter.

Strongest evidence yet that neutrinos explain how the universe exists
New data throws more support behind the theory that neutrinos are the reason the universe is dominated by matter.

APS tip sheet: Origins of matter and antimatter
Study suggests an 'axiogenesis' mechanism for the explanation of the matter to antimatter ratio in the Universe

The axion solves three mysteries of the universe
A hypothetical particle called the axion could solve one of physics' great mysteries: the excess of matter over antimatter, or why we're here at all.

NASA's Fermi Mission links nearby pulsar's gamma-ray 'halo' to antimatter puzzle
NASA's Fermi Gamma-ray Space Telescope has discovered a faint but sprawling glow of high-energy light around a nearby pulsar.

Could the mysteries of antimatter and dark matter be linked?
RIKEN researchers and collaborators have performed the first laboratory experiments to determine whether a slightly different way in which matter and antimatter interact with dark matter might be a key to solving both mysteries.

Read More: Antimatter News and Antimatter Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.