Nav: Home

Scientists discover enzyme that could slow part of the aging process in astronauts -- and the elderly

April 30, 2012

New research published online in the FASEB Journal suggests that a specific enzyme, called 5-lipoxygenase, plays a key role in cell death induced by microgravity environments, and that inhibiting this enzyme will likely help prevent or lessen the severity of immune problems in astronauts caused by spaceflight. Additionally, since space conditions initiate health problems that mimic the aging process on Earth, this discovery may also lead to therapeutics that extend lives by bolstering the immune systems of the elderly.

"The outcomes of this space research might be helpful to improve health in the elderly on Earth," said Mauro Maccarrone, Ph.D., a researcher involved in the work from the Department of Biomedical Sciences at the University of Teramo in Teramo, Italy. "In fact, space conditions [cause problems that] resemble the physiological process of aging and drugs able to reduce microgravity-induced immunodepression might be effective therapeutics against loss of immune performance in aging people. 5-lipoxygenase inhibitors, already used to curb human inflammatory diseases, may be such a group of compounds."

Maccarone and colleagues made this discovery by conducting experiments involving two groups of human lymphocytes that were isolated from the blood of two healthy donors. The first group of lymphocytes was exposed to microgravity onboard the International Space Station (ISS). The second group was put in a centrifuge onboard the ISS, to have the same "Space environment" as the other group, but a normal Earth-like force of gravity. When programmed cell death (apoptosis) was measured in both groups, the lymphocytes exposed to microgravity showed an increase above what is considered "normal." The group exposed to the simulated Earth gravity showed no unusual differences. Specifically, the researchers believe that this difference is caused by different levels of the 5-lipoxygenase enzyme.

"It's no surprise that bodies need Earth's gravity to function properly," said Gerald Weissmann, M.D., Editor-in-Chief of the FASEB Journal, "because we evolved to survive on this planet. As humanity moves into space and potentially to other planets or asteroids, it's clear that we need know how not only to secure habitable conditions, but also how to secure our health. Fortunately, as we learn how to cope with low gravity environments, we also unlock secrets to longevity back home on Earth."

-end-

Receive monthly highlights from the FASEB Journal by e-mail. Sign up at http://www.faseb.org/fjupdate.aspx. The FASEB Journal is published by the Federation of the American Societies for Experimental Biology (FASEB) and celebrated its 25th anniversary in 2011. Over the past quarter century, the journal has been recognized by the Special Libraries Association as one of the top 100 most influential biomedical journals of the past century and is the most cited biology journal worldwide according to the Institute for Scientific Information. FASEB comprises 26 societies with more than 100,000 members, making it the largest coalition of biomedical research associations in the United States. FASEB enhances the ability of scientists and engineers to improve--through their research--the health, well-being and productivity of all people. FASEB's mission is to advance health and welfare by promoting progress and education in biological and biomedical sciences through service to its member societies and collaborative advocacy.

Details: Natalia Battista, Maria A. Meloni, Monica Bari, Nicolina Mastrangelo, Grazia Galleri, Cinzia Rapino, Enrico Dainese, Alessandro Finazzi Agrò, Proto Pippia, and Mauro Maccarrone. 5-Lipoxygenase-dependent apoptosis of human lymphocytes in the International Space Station: data from the ROALD experiment. FASEB J May 2012 26:1791-1798; doi:10.1096/fj.11-199406 ; http://www.fasebj.org/content/26/5/1791.abstract

Federation of American Societies for Experimental Biology
Brain development and aging
The brain is a complex organ -- a network of nerve cells, or neurons, producing thought, memory, action, and feeling.
Aging gracefully in the rainforest
In an article that appears in the current issue of Evolutionary Anthropology, researchers synthesize over 15 years of theoretical and empirical findings from long-term study of the Tsimane forager-farmers.
Reversing aging now possible!
DGIST's research team identified the mechanism of reversible recovery of aging cells by inducing lysosomal activation.
Brain-aging gene discovered
Researchers at Columbia University Medical Center have discovered a common genetic variant that greatly affects normal brain aging in older adults.
Aging can be good for you (if you're a yeast)
It's a cheering thought for anyone heading towards their golden years.
How eating less can slow the aging process
New research shows why calorie restriction made mice live longer and healthier lives.
Turning back the aging clock
By boosting genes that destroy defective mitochondrial DNA, researchers can slow down and potentially reverse an important part of the aging process.
Insilico Medicine launches a deep learned biomarker of aging, Aging.AI 2.0 for testing
Insilico Medicine, Inc., a company applying latest advances in deep learning to biomarker development, drug discovery and aging research, launched Aging.AI 2.0.
Substance with the potential to postpone aging
The coenzyme NAD+ plays a main role in aging processes.
What does a healthy aging cat look like?
Just as improved diet and medical care have resulted in increased life expectancy in humans, advances in nutrition and veterinary care have increased the life span of pet cats.

Best Science Podcasts 2017

We have hand picked the best science podcasts for 2017. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.

Now Playing: Radiolab

Truth Trolls
Today, a third story of folks relentlessly searching for the truth. But this time, the truth seekers are an unlikely bunch... internet trolls.


Now Playing: TED Radio Hour

Rethinking School
For most of modern history, humans have placed smaller humans in institutions called schools. But what parts of this model still work? And what must change? This hour, TED speakers rethink education.TED speakers include teacher Tyler DeWitt, social entrepreneur Sal Khan, international education expert Andreas Schleicher, and educator Linda Cliatt-Wayman.