Nav: Home

Bacteria's appetite may be key to cleaning up antibiotic contamination

April 30, 2018

Antibiotics can be lifesaving for people suffering from serious bacterial infections such as pneumonia and meningitis. The drugs are lethal to bacteria -- but some bacteria fight back by developing resistance to antibiotics, and a few not only resist the onslaught, but turn the lethal drugs into food.

Scientists have understood little about how bacteria manage to consume antibiotics safely, but new research from Washington University School of Medicine in St. Louis illuminates key steps in the process.

The findings, published April 30 in Nature Chemical Biology, could lead to new ways to eliminate antibiotics from land and water, the researchers said. Environmental antibiotic contamination promotes drug resistance and undermines our ability to treat bacterial infections.

"Ten years ago we stumbled onto the fact that bacteria can eat antibiotics, and everyone was shocked by it," said senior author Gautam Dantas, PhD, an associate professor of pathology and immunology, of molecular microbiology, and of biomedical engineering. "But now it's beginning to make sense. It's just carbon, and wherever there's carbon, somebody will figure out how to eat it. Now that we understand how these bacteria do it, we can start thinking of ways to use this ability to get rid of antibiotics where they are causing harm."

Drug resistance is a serious and worsening problem that threatens to set medical care back to a time when antibiotics were not yet discovered and infectious disease was the number one cause of death worldwide.

Modern industrial and agricultural practices are hastening the rise of antibiotic resistance by saturating the environment with active drugs. In India and China, which together produce the vast majority of the world's antibiotics, pharmaceutical factories sometimes dump antibiotic-laden waste into local waterways. In the United States, some farmers add antibiotics to their animal feed to help their livestock grow, which produces waste loaded with the drugs.

Bacteria easily share genetic material. So when antibiotics infiltrate the water and soil, resident bacteria respond by spreading antibiotic resistance genes through the community.

Dantas, postdoctoral researcher and first author Terence Crofts, PhD, and colleagues wanted to understand how some environmental bacteria not only withstand antibiotics, but feed on them. They studied four distantly related species of soil bacteria that all flourish on a diet of penicillin alone. Penicillin was the first antibiotic discovered, but it has fallen out of favor because of resistance. Other members of the penicillin family such as amoxicillin and ampicillin are still effective and widely prescribed to treat bacterial infections.

The researchers found three distinct sets of genes that became active while the bacteria ate penicillin but inactive while the bacteria ate sugar. The three sets of genes correspond to three steps bacteria take to transform a lethal compound into a meal.

All of the bacteria start by neutralizing the dangerous part of the antibiotic. Once the toxin is disarmed, they snip off a tasty portion and eat it.

Understanding the steps involved in converting an antibiotic into food could help researchers bioengineer bacteria to clean up soil and waterways contaminated with drugs and thereby slow the spread of drug resistance. The soil bacteria that naturally eat antibiotics are finicky and difficult to work with. But a more tractable species such as E. coli potentially could be engineered to feed on antibiotics in polluted land or water.

Crofts and Dantas showed they could give E. coli the ability to survive and thrive on penicillin. The bacterium normally requires sugar, but with some genetic modification and the addition of a key protein, it flourished on a sugar-free diet of penicillin.

"With some smart engineering, we may be able to modify bacteria to break down antibiotics in the environment," Crofts said.

Any such bioengineering project would have to include a plan to speed up the antibiotic-eating process. The way soil bacteria naturally remove antibiotics from the environment is effective but slow. They couldn't possibly handle the amounts of antibiotics near pharmaceutical factories and in sewage facilities.

"You couldn't just douse a field with these soil bacteria today and expect them to clean everything up," Dantas said. "But now we know how they do it. It is much easier to improve on something that you already have than to try to design a system from scratch."
-end-


Washington University School of Medicine

Related Bacteria Articles:

How bacteria fertilize soya
Soya and clover have their very own fertiliser factories in their roots, where bacteria manufacture ammonium, which is crucial for plant growth.
Bacteria might help other bacteria to tolerate antibiotics better
A new paper by the Dynamical Systems Biology lab at UPF shows that the response by bacteria to antibiotics may depend on other species of bacteria they live with, in such a way that some bacteria may make others more tolerant to antibiotics.
Two-faced bacteria
The gut microbiome, which is a collection of numerous beneficial bacteria species, is key to our overall well-being and good health.
Microcensus in bacteria
Bacillus subtilis can determine proportions of different groups within a mixed population.
Right beneath the skin we all have the same bacteria
In the dermis skin layer, the same bacteria are found across age and gender.
Bacteria must be 'stressed out' to divide
Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.
How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.
The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?
Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.
Bacteria uses viral weapon against other bacteria
Bacterial cells use both a virus -- traditionally thought to be an enemy -- and a prehistoric viral protein to kill other bacteria that competes with it for food according to an international team of researchers who believe this has potential implications for future infectious disease treatment.
More Bacteria News and Bacteria Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Making Amends
What makes a true apology? What does it mean to make amends for past mistakes? This hour, TED speakers explore how repairing the wrongs of the past is the first step toward healing for the future. Guests include historian and preservationist Brent Leggs, law professor Martha Minow, librarian Dawn Wacek, and playwright V (formerly Eve Ensler).
Now Playing: Science for the People

#565 The Great Wide Indoors
We're all spending a bit more time indoors this summer than we probably figured. But did you ever stop to think about why the places we live and work as designed the way they are? And how they could be designed better? We're talking with Emily Anthes about her new book "The Great Indoors: The Surprising Science of how Buildings Shape our Behavior, Health and Happiness".
Now Playing: Radiolab

The Third. A TED Talk.
Jad gives a TED talk about his life as a journalist and how Radiolab has evolved over the years. Here's how TED described it:How do you end a story? Host of Radiolab Jad Abumrad tells how his search for an answer led him home to the mountains of Tennessee, where he met an unexpected teacher: Dolly Parton.Jad Nicholas Abumrad is a Lebanese-American radio host, composer and producer. He is the founder of the syndicated public radio program Radiolab, which is broadcast on over 600 radio stations nationwide and is downloaded more than 120 million times a year as a podcast. He also created More Perfect, a podcast that tells the stories behind the Supreme Court's most famous decisions. And most recently, Dolly Parton's America, a nine-episode podcast exploring the life and times of the iconic country music star. Abumrad has received three Peabody Awards and was named a MacArthur Fellow in 2011.