Nav: Home

Water-repellent surfaces can efficiently boil water, keep electronics cool

April 30, 2018

WEST LAFAYETTE, Ind. -- Surfaces that repel water can support efficient boiling if all air and vapor is removed from a system first, according to research featured on the cover of the most recent issue of Physical Review Letters.

Water is typically boiled off hydrophilic surfaces to cool nuclear reactors and high-power electronics, preventing them from overheating. Purdue University research has shown that the most water-repellent surfaces possible, superhydrophobic materials, not only can boil water efficiently under the right conditions, but also stay cooler than hydrophilic surfaces.

"One of the ways to take heat out of a surface is to boil from it," said Justin Weibel, associate research professor of mechanical engineering. "But no one typically considers using superhydrophobic surfaces to improve boiling."

Consumer electronics - including laptops and even some smartphones - have water within metal "heat pipes" that dissipate the heat generated when these devices are in use, cooling them off. High-power electronics used in electric vehicles, supercomputers and aircraft particularly call for more efficient means to prevent overheating.

"Superhydrophobic surfaces were previously thought to be bad for boiling because they can't stay wet," said Taylor Allred, a Purdue doctoral student in mechanical engineering and first author on the paper. "You get a blanket of vapor on the surface, and because vapor is a very good insulator of heat, you are insulating the surface instead of cooling it."

Past research has led scientists to believe that without this layer of insulating vapor, superhydrophobic surfaces could potentially boil at lower temperatures than hydrophilic ones. Several studies have attempted making patterned surfaces to get the benefits of both hydrophilic and hydrophobic materials, but researchers hadn't yet achieved an entirely vapor-free surface with patterning due to the hydrophobic regions.

"We realized that if we could perform one key step prior to boiling from the superhydrophobic surface, we could get the best of both hydrophobic and hydrophilic surface behaviors all in one," said Suresh Garimella, Purdue's Goodson Distinguished Professor of Mechanical Engineering and director of the Cooling Technologies Research Center.

Allred first submerged the surface and then heated the surrounding water, being careful to not boil directly from the surface itself. Doing so removed the layer of air that is normally trapped within the texture of the superhydrophobic surface, allowing water to instead penetrate the texture and fully wet it as it would for a hydrophilic surface.

Pre-wetting the texture of a superhydrophobic surface results in the "pinning" of small bubbles during boiling, meaning that they don't spread out over the surface as they expand. They instead depart without coalescing into a vapor blanket and help keep the surface wet with liquid water. Hydrophobic materials are also able to form many more small bubbles than hydrophilic surfaces, allowing the surface to be cooled more efficiently.

"There are numerous papers on making superhydrophobic surfaces and using them for a variety of applications. With this research, we've opened up a whole new area where they can be deployed," Garimella said.
Several personnel from the Naval Reserve Officer Training Corps and the United States Military and Naval Academies participated in the project, which was conducted as part of the Naval Enterprise Partnership Teaming with Universities for National Excellence Center for Power and Energy Research at Purdue with funding from the Office of Naval Research. These findings will inform the development of improved thermal management technologies in the Navy's next-generation electronics systems.


Enabling highly effective boiling from superhydrophobic surfaces

Taylor Allred, Justin Weibel, Suresh Garimella

School of Mechanical Engineering and Birck Nanotechnology Center,

Purdue University, West Lafayette, IN, USA

doi: 10.1103/PhysRevLett.120.174501

A variety of industrial applications such as power generation, water distillation, and high-density cooling rely on heat transfer processes involving boiling. Enhancements to the boiling process can improve the energy efficiency and performance across multiple industries. Highly wetting textured surfaces have shown promise in boiling applications since capillary wicking increases the maximum heat flux that can be dissipated. Conversely, highly non-wetting textured (superhydrophobic) surfaces have been largely dismissed for these applications as they have been shown to promote formation of an insulating vapor film that greatly diminishes heat transfer efficiency. The current work shows that boiling from a superhydrophobic surface in an initial Wenzel state, in which the surface texture is infiltrated with liquid, results in remarkably low surface superheat with nucleate boiling sustained up to a critical heat flux typical of hydrophilic wetting surfaces, and thus upends this conventional wisdom. Two distinct boiling behaviors are demonstrated on both microstructured and nanostructured superhydrophobic surfaces based on the initial wetting state. For an initial surface condition in which vapor occupies the interstices of the surface texture (Cassie-Baxter state), premature film boiling occurs, as has been commonly observed in the literature. However, if the surface texture is infiltrated with liquid (Wenzel state) prior to boiling, drastically improved thermal performance is observed; in this wetting state, the three-phase contact line is pinned during vapor bubble growth, which prevents the development of a vapor film over the surface and maintains efficient nucleate boiling behavior.

Purdue University

Related Hydrophobic Articles:

KIST ensures stability of desalination process with magnesium
A Korean research team found a method to inhibit the fouling of membranes, which are used in the desalination process that removes salt and dissolved substances from seawater to obtain drinking, domestic, and industrial water.
Superhydrophobic magnetic sponge to help purify water from oil products
TPU jointly with the University of Lille developed a new material capable of purifying water effectively from oil products.
Ben-Gurion University researchers develop new method to remove dust on solar panels
Particle removal increased from 41% on hydrophilic smooth Si wafers to 98% on superhydrophobic Si-based nanotextured surfaces.
'Self-cleaning' concrete could keep buildings looking new (video)
Building materials that clean themselves could save immense time and labor in homes and businesses, as well as reduce disease risk in settings such as hospitals.
Spiders and ants inspire a metallic structure that refuses to sink
University of Rochester researchers have created a metallic structure that is so hydrophobic, it refuses to sink - no matter how often it is forced into water or how much it is damaged or punctured.
Physicists shed new light on how liquids behave with other materials
Using a range of theoretical and simulation approaches, physicists from the University of Bristol have shown that liquids in contact with substrates can exhibit a finite number of classes of behavior and identify the important new ones.
Quantum destabilization of a water sandwich
When a thin layer of water is squeezed between two hydrophobic surfaces, the laws of classical physics break down.
DNA is held together by hydrophobic forces
Researchers at Chalmers University of Technology, Sweden, disprove the prevailing theory of how DNA binds itself.
Charge change: How electric forces vary in colloids
When calculating the electrokinetic force, the convention has been to assume that there is no relative velocity of the fluid compared to the surface, which holds true for hydrophilic surfaces.
Hydrophobic silica colloid electrolyte holds promise for safer Li-O2 batteries
A research team led by ZHANG Xinbo from the Changchun Institute of Applied Chemistry (CIAC) of the Chinese Academy of Sciences developed an electrolyte regulation strategy by in situ coupling of CF3SO3- on hydrophobic silica colloidal particles via electrostatic interactions in order to prevent lithium dendrite growth and corrosion.
More Hydrophobic News and Hydrophobic Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

TED Radio Wow-er
School's out, but many kids–and their parents–are still stuck at home. Let's keep learning together. Special guest Guy Raz joins Manoush for an hour packed with TED science lessons for everyone.
Now Playing: Science for the People

#565 The Great Wide Indoors
We're all spending a bit more time indoors this summer than we probably figured. But did you ever stop to think about why the places we live and work as designed the way they are? And how they could be designed better? We're talking with Emily Anthes about her new book "The Great Indoors: The Surprising Science of how Buildings Shape our Behavior, Health and Happiness".
Now Playing: Radiolab

The Third. A TED Talk.
Jad gives a TED talk about his life as a journalist and how Radiolab has evolved over the years. Here's how TED described it:How do you end a story? Host of Radiolab Jad Abumrad tells how his search for an answer led him home to the mountains of Tennessee, where he met an unexpected teacher: Dolly Parton.Jad Nicholas Abumrad is a Lebanese-American radio host, composer and producer. He is the founder of the syndicated public radio program Radiolab, which is broadcast on over 600 radio stations nationwide and is downloaded more than 120 million times a year as a podcast. He also created More Perfect, a podcast that tells the stories behind the Supreme Court's most famous decisions. And most recently, Dolly Parton's America, a nine-episode podcast exploring the life and times of the iconic country music star. Abumrad has received three Peabody Awards and was named a MacArthur Fellow in 2011.