Nav: Home

Human ancestors were 'grounded,' new analysis shows

April 30, 2019

African apes adapted to living on the ground, a finding that indicates human evolved from an ancestor not limited to tree or other elevated habitats. The analysis adds a new chapter to evolution, shedding additional light on what preceded human bipedalism.

"Our unique form of human locomotion evolved from an ancestor that moved in similar ways to the living African apes--chimpanzees, bonobos, and gorillas," explains Thomas Prang, a doctoral candidate in New York University's Department of Anthropology and the author of the study, which appears in the journal eLife. "In other words, the common ancestor we share with chimpanzees and bonobos was an African ape that probably had adaptations to living on the ground in some form and frequency."

The way that humans walk--striding bipedalism--is unique among all living mammals, an attribute resulting from myriad changes over time.

"The human body has been dramatically modified by evolutionary processes over the last several million years in ways that happened to make us better walkers and runners," notes Prang.

Much of this change is evident in the human foot, which has evolved to be a propulsive organ, with a big toe incapable of ape-like grasping and a spring-like, energy-saving arch that runs from front to back.

These traits raise a long-studied, but not definitively answered, question: From what kind of ancestor did the human foot evolve?

In the eLife work, Prang, a researcher in NYU's Center for the Study of Human Origins, focused on the fossil species Ardipithecus ramidus ('Ardi'), a 4.4 million-years-old human ancestor from Ethiopia--more than a million years older than the well-known 'Lucy' fossil. Ardi's bones were first publicly revealed in 2009 and have been the subject of debate since then.

In his research, Prang ascertained the relative length proportions of multiple bones in the primate foot skeleton to evaluate the relationship between species' movement (locomotion) and their skeletal characteristics (morphology). In addition, drawing upon the Ardi fossils, he used statistical methods to reconstruct or estimate what the common ancestor of humans and chimpanzees might have looked like.

Here, he found that the African apes show a clear signal of being adapted to ground-living. The results also reveal that the Ardi foot and the estimated morphology of the human-chimpanzee last common ancestor is most similar to these African ape species.

"Therefore, humans evolved from an ancestor that had adaptations to living on the ground, perhaps not unlike those found in African apes," Prang concludes. "These findings suggest that human bipedalism was derived from a form of locomotion similar to that of living African apes, which contrasts with the original interpretation of these fossils."

The original interpretation of the Ardi foot fossils, published in 2009, suggested that its foot was more monkey-like than chimpanzee- or gorilla-like. The implication of this interpretation is that many of the features shared by living great apes (chimpanzees, bonobos, gorillas, and orangutans) in their foot and elsewhere must have evolved independently in each lineage--in a different time and place.

"Humans are part of the natural world and our locomotor adaptation--bipedalism--cannot be understood outside of its natural evolutionary context," Prang observes. "Large-scale evolutionary changes do not seem to happen spontaneously. Instead, they are rooted in deeper histories revealed by the study of the fossil record.

"The study of the Ardi fossil shows that the evolution of our own ground-living adaptation--bipedalism--was preceded by a quadrupedal ground-living adaptation in the common ancestors that we share with the African apes."
-end-


New York University

Related Evolution Articles:

Prebiotic evolution: Hairpins help each other out
The evolution of cells and organisms is thought to have been preceded by a phase in which informational molecules like DNA could be replicated selectively.
How to be a winner in the game of evolution
A new study by University of Arizona biologists helps explain why different groups of animals differ dramatically in their number of species, and how this is related to differences in their body forms and ways of life.
The galloping evolution in seahorses
A genome project, comprising six evolutionary biologists from Professor Axel Meyer's research team from Konstanz and researchers from China and Singapore, sequenced and analyzed the genome of the tiger tail seahorse.
Fast evolution affects everyone, everywhere
Rapid evolution of other species happens all around us all the time -- and many of the most extreme examples are associated with human influences.
Landscape evolution and hazards
Landscapes are formed by a combination of uplift and erosion.
New insight into enzyme evolution
How enzymes -- the biological proteins that act as catalysts and help complex reactions occur -- are 'tuned' to work at a particular temperature is described in new research from groups in New Zealand and the UK, including the University of Bristol.
The evolution of Dark-fly
On Nov. 11, 1954, Syuiti Mori turned out the lights on a small group of fruit flies.
A look into the evolution of the eye
A team of researchers, among them a zoologist from the University of Cologne, has succeeded in reconstructing a 160 million year old compound eye of a fossil crustacean found in southeastern France visible.
Is evolution more intelligent than we thought?
Evolution may be more intelligent than we thought, according to a University of Southampton professor.
The evolution of antievolution policies
Organized opposition to the teaching of evolution in public schoolsin the United States began in the 1920s, leading to the famous Scopes Monkey trial.

Related Evolution Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#529 Do You Really Want to Find Out Who's Your Daddy?
At least some of you by now have probably spit into a tube and mailed it off to find out who your closest relatives are, where you might be from, and what terrible diseases might await you. But what exactly did you find out? And what did you give away? In this live panel at Awesome Con we bring in science writer Tina Saey to talk about all her DNA testing, and bioethicist Debra Mathews, to determine whether Tina should have done it at all. Related links: What FamilyTreeDNA sharing genetic data with police means for you Crime solvers embraced...