Nav: Home

New research to explore technology needed for peer-to-peer 'free trade' in excess energy

April 30, 2019

Households and businesses that generate their own power through micro-renewables, such as solar panels and wind turbines, may soon be able to decide where to distribute their extra energy thanks to funding from the Engineering and Physical Sciences Research Council (EPSRC).

The UK has seen an increase in the uptake of micro-generation, in which individuals or organisations install their own small scale, renewables-based energy generators to produce and use energy. These technologies will play a significant role in the UK meeting its carbon emissions targets and decarbonising its economy in line with the government's Clean Growth Strategy.

Currently, in the UK, the household-generators must sell the excess of their production back to the national grid at a set price. However, now computer scientists at the University of Bristol are using a £460,000 grant from the EPSRC to research 'free trade' between micro-generators in a peer-to-peer energy market. In such a peer-to-peer energy market (P2P) any two individuals/households can directly buy from and sell to each other, without inter-mediating utilities or other third parties.

The key aim of the Household-Supplier Energy Market Project is to research the feasibility of a 'democratised' P2P energy market.

Dr Ruzanna Chitchyan, who leads the project, said: "Perhaps you have installed some solar panels and you would much rather contribute your excess generation free of charge to the nearby homeless shelter instead of selling it back to the utility provider. Or sell it to someone else at a better price or give it to your neighbour. The households that produce the energy should have the power to decide on what to do with it. Similarly, consumers should be able to decide whose energy and at what price they want to buy. The HoSEM trading platform will support this freedom of choice.

"Similar 'sharing' platforms are already in place in other markets, for example via Airbnb in the hotel industry, or Uber in taxi hire (though both of these still impose substantial centralisation and intermediation charges)."

The Bristol research will look at:
  • Whether the infrastructure for P2P energy trading is technically feasible

  • Who will provide it?

  • What will be the role of the current major power producers in such a market?

  • Whether supply continuity can be ensured under the fluctuating generation imposed by the nature of the renewable energy sources

  • What regulatory changes are necessary for this market to function?

  • What mechanisms, including cyber security and privacy approaches, are needed to engender trust in such a market?
EDF Energy is the industrial partner in this project and is currently testing the concept of peer-to-peer trading between households as part of a trial within a block of flats in London.

Universities of Exeter and Leicester are the other partners on HoSEM project. Exeter researchers are looking at what factors will encourage households/groups to join this peer-to-peer market, while Leicester researchers are taking an algorithmic and game-theoretic view on the peer-to-peer trading.

Jim Fleming, EPSRC's Head of Energy said: "As we move to a low carbon society, we need to make the most of the energy generated by all producers, large or small. This project will look at the technical challenges that need to be overcome to implement a peer-to-peer energy trading system. If successful it will bring power from the people to the people."

To enable such a P2P energy market, the project is developing a technical platform to support P2P household-level energy trading [1, 2]. This will give market participants read and write access to the records for the production, sale and purchase of energy at low cost per transaction. Each transaction must be accurately recorded, verifiable and secured to guarantee accurate assignment of rights and responsibilities for trades and billing, allowing equal access to all interested participants.

The distributed ledger technology could uniquely meet the domain requirements for the decentralised distributed energy systems, providing an ideal technical tool for such a platform, if the households were to trust the platform providers, and were willing to join this market. The ledgers could also be available to third party businesses that wish to provide new value-added services to the energy market.
-end-
References:

[1] J. Murkin, R. Chitchyan, D. Ferguson, Goal-based automation of peer-to-peer electricity trading, From Science to Society, pp 139-151, 2018

[2] J. Park, R. Chitchyan, A Angelopoulou, J. Murkin, IOTA Simulation Model for Energy Trading, 2019, available from: https://cloud.anylogic.com/model/966f6846-62e0-460e-bf69-2a1b00317128?mode=SETTINGS&tab=GENERAL

For media inquiries contact:

Dr Ruzanna Chitchyan, Senior Lecturer in Software Engineering, Faculty of Engineering, University of Bristol, tel: 0117 331 5019, e-mail: r.chitchyan@bristol.ac.uk or the EPSRC Press Office, tel: 01793 444404, e-mail: pressoffice@epsrc.ukri.org

Notes for editors:

Engineering and Physical Sciences Research Council (EPSRC) is part of UK Research and Innovation, a non-departmental public body funded by a grant-in-aid from the UK government. EPSRC is the main funding body for engineering and physical sciences research in the UK. By investing in research and postgraduate training, we are building the knowledge and skills base needed to address the scientific and technological challenges facing the nation. Our portfolio covers a vast range of fields from healthcare technologies to structural engineering, manufacturing to mathematics, advanced materials to chemistry. The research we fund has impact across all sectors. It provides a platform for future UK prosperity by contributing to a healthy, connected, resilient, productive nation.

Engineering and Physical Sciences Research Council

Related Solar Panels Articles:

NASA's solar dynamics observatory captured trio of solar flares April 2-3
The sun emitted a trio of mid-level solar flares on April 2-3, 2017.
Chemists create molecular 'leaf' that collects and stores solar power without solar panels
An international research team centered at Indiana University have engineered a molecule that uses light or electricity to convert the greenhouse gas carbon dioxide into carbon monoxide -- a carbon-neutral fuel source -- more efficiently than any other method of 'carbon reduction.' The discovery, reported today in the Journal of the American Chemical Society, is a new milestone in the quest to recycle carbon dioxide in the Earth's atmosphere into carbon-neutral fuels and others materials.
Lotus stir-fry scores high in consumer panels
A report details potential demand and consumer preference for fresh lotus rhizomes and products such as lotus salad, baked lotus chips, and lotus stir-fry.
A new way to image solar cells in 3-D
Berkeley Lab scientists have developed a way to use optical microscopy to map thin-film solar cells in 3-D as they absorb photons.
Web panels build customer loyalty
Customers who are asked to participate in retailer-sponsored Web panels feel valued by being invited to take part and tend to express their gratitude by buying more and across more different product categories.
This 'nanocavity' may improve ultrathin solar panels, video cameras and more
Recently, engineers placed a single layer of MoS2 molecules on top of a photonic structure called an optical nanocavity made of aluminum oxide and aluminum.
Under Pressure: New technique could make large, flexible solar panels more feasible
A new, high-pressure technique may allow the production of huge sheets of thin-film silicon semiconductors at low temperatures in simple reactors at a fraction of the size and cost of current technology.
Swept up in the solar wind
The sun's outer layer, the corona, constantly streams out charged particles called the solar wind.
Bringing low-cost solar panels to the market
In just one hour, the Earth receives more than enough energy from the sun to meet the world population's electricity needs in an entire year.
Shining more light on solar panels
A better understanding of how light reflects off different surfaces has improved action movies, videogames and now solar panels.

Related Solar Panels Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Moving Forward
When the life you've built slips out of your grasp, you're often told it's best to move on. But is that true? Instead of forgetting the past, TED speakers describe how we can move forward with it. Guests include writers Nora McInerny and Suleika Jaouad, and human rights advocate Lindy Lou Isonhood.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...