Nav: Home

New mathematical approach tested for the search of flight MH370

April 30, 2019

WASHINGTON, D.C., April 30, 2019 -- The 2014 disappearance of Malaysia Airlines Flight MH370 remains ones of the biggest mysteries in aviation. More than $150 million has been spent so far to identify where the plane carrying 239 passengers crashed into the Indian Ocean, with no success. Recent efforts combining satellite data with a new mathematical approach aim to make headway in the search for plane crashes.

An international team of researchers has developed a new mathematical approach to analyzing how debris moves around the ocean that has been able to identify a potential crash site. Using what are known as Markov chain models, they have narrowed down a potential crash location substantially north of the region where most search efforts have concentrated.

A Markov chain model predicts the behavior of complicated systems by determining the probability of each outcome from the current state of what is being studied. They have been used to power Google search algorithms and model financial markets.

In the study, reported in the journal Chaos, from AIP Publishing, the group used data from the Global Drifters Program, a publicly available dataset that uses satellites to track spherical buoys as the ocean's currents, waves and wind push them along paths over time.

In true Markovian fashion, each aimless buoy's next turn is an independent event from every other movement it has made in the past. The buoys were then placed on a grid with more than 3,000 virtual squares to simulate where plane debris would float to.

One issue is that very little debris has been found so far.

"Surprisingly, after more than three years, there is only a handful of confirmed debris recovered from the airplane," said Philippe Miron from University of Miami and the lead author on the paper. "This increases the errors of the model."

Seasonal variation in the Indian Ocean also required the team to develop three separate models to accurately predict debris movement during the protracted search effort.

"The monsoon in the Indian Ocean has important effects on the circulation of the region," Miron said.

After the analysis, the team's estimated search area was from 33 to 17 degrees south latitude along the arc of the last satellite to contact the downed plane, whose northern edge has remained largely unscrutinized.

Miron said he hopes the group's approach will encourage future efforts to deploy more trackable devices in the ocean to provide more data to solve similarly vexing problems. He looks to use mathematical models to further understand how drifting objects move in the ocean, including the flow of hydrocarbons following undersea oil spills.
-end-
The article, "Markov-chain-inspired search for MH370," is authored by Philippe Miron, Francisco Beron-Vera, Maria J. Olascoaga and Peter Koltai. It will appear in Chaos on April 30, 2019 (DOI: 10.1063/1.5092132). After that date, it can be accessed at http://aip.scitation.org/doi/full/10.1063/1.5092132.

ABOUT THE JOURNAL

Chaos is devoted to increasing the understanding of nonlinear phenomena in all disciplines and describing their manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines. See http://chaos.aip.org.

American Institute of Physics

Related Satellite Articles:

Satellite images reveal global poverty
How far have we come in achieving the UN's sustainable development goals that we are committed to nationally and internationally?
Satellite data exposes looting
Globally archaeological heritage is under threat by looting. The destruction of archaeological sites obliterates the basis for our understanding of ancient cultures and we lose our shared human past.
NASA satellite finds 16W now subtropical
NASA-NOAA's Suomi NPP satellite found 16W was still being battered by wind shear after transitioning into an extra-tropical cyclone.
How far to go for satellite cloud image forecasting into operation
Simulated satellite cloud images not only have the visualization of cloud imagery, but also can reflect more information about the model.
NASA confirms re-discovered IMAGE satellite
The identity of the satellite re-discovered on Jan. 20, 2018, has been confirmed as NASA's IMAGE satellite.
More Satellite News and Satellite Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...