Nav: Home

Evolving alongside viruses impacts susceptibility to future infections

April 30, 2019

Researchers have shown that when fruit flies co-evolve with viruses, different genetic changes occur to those caused by encountering a virus for the first time, altering the insects' susceptibility to future infection.

The findings, published in eLife, help to address a fundamental question in infectious disease biology: why are some individuals genetically resistant to infection, while others are genetically susceptible? Answering this question has potential implications for reducing disease, for example where genetic variation plays a role in a mosquito's ability to transmit malaria.

"Whether you look at humans or bacteria, you find some individuals are resistant to pathogen infection but others are susceptible," explains Frank Jiggins, Group Leader at the University of Cambridge, UK, and an author of the study. "These differences are frequently thought to result from co-evolution between pathogens and their hosts, and we wanted to formally test this idea using flies and viruses."

The team used four species of fruit fly to compare genetic variation caused by naturally occurring (endemic) insect viruses, called sigma viruses, with variation caused by non-endemic viruses from other insect species. Within all four species of fruit fly, there was a significantly greater variation in susceptibility to the endemic sigma viruses than to viruses from other species. For example, there was a 1,294-fold increase in viral load (the number of viral particles) in one of the species of fruit fly for the non-endemic viruses, compared with the endemic virus. This suggested the flies were more susceptible to non-endemic virus infection.

The team next investigated whether the genetic basis of resistance to the viruses was different for the endemic (co-evolved) and non-endemic viruses. They searched for known genetic variants in the fruit-fly genomes and looked at their effects on viral load. Their effect was greater on the endemic virus than on the viruses from other species, meaning that genetic variants which provide resistance to endemic sigma viruses do not protect against other virus species.

These initial experiments sampled flies with diverse genetic make-up from a single location. To further investigate how virus co-evolution shapes fly genetics, the team mapped known resistance genes in a collection of genetically similar fruit flies from around the world. The results confirmed their earlier findings - that there was considerably more genetic variation in susceptibility to the co-evolved virus than the non-endemic virus. The earlier result from a single fly population held true when sampling flies from across six continents.

"We have found greater genetic variation in susceptibility to viruses that naturally infect fruit flies compared to viruses that do not, suggesting that selection by these pathogens has acted to increase the amount of variation in susceptibility," concludes Ben Longdon, Sir Henry Dale Wellcome Trust and Royal Society Research Fellow at the University of Exeter, UK, and an author of the study. "Our results indicate that when a pathogen infects a novel host species, there may be far less genetic variation in susceptibility among individuals than is normally the case. This may leave populations vulnerable to epidemics of pathogens that have previously been circulated in other host species."

The paper 'Host-pathogen coevolution increases genetic variation in susceptibility to infection' can be freely accessed online at Contents, including text, figures and data, are free to reuse under a CC BY 4.0 license.

Media contact

Emily Packer, Senior Press Officer

01223 855373

About eLife

eLife is a non-profit organisation inspired by research funders and led by scientists. Our mission is to help scientists accelerate discovery by operating a platform for research communication that encourages and recognises the most responsible behaviours in science. We publish important research in all areas of the life and biomedical sciences, including Evolutionary Biology, which is selected and evaluated by working scientists and made freely available online without delay. eLife also invests in innovation through open-source tool development to accelerate research communication and discovery. Our work is guided by the communities we serve. eLife is supported by the Howard Hughes Medical Institute, the Max Planck Society, the Wellcome Trust and the Knut and Alice Wallenberg Foundation. Learn more at

To read the latest Evolutionary Biology research published in eLife, visit


Related Fruit Flies Articles:

Fruit flies help in the development of personalized medicine
It is common knowledge that there is a connection between our genes and the risk of developing certain diseases.
Fruit flies' microbiomes shape their evolution
In just five generations, an altered microbiome can lead to genome-wide evolution in fruit flies, according to new research led researchers at the University of Pennsylvania.
Why fruit flies eat practically anything
Kyoto University researchers uncover why some organisms can eat anything -- 'generalists -- and others have strict diets -- 'specialists'.
Why so fly: MU scientists discover some fruit flies learn better than others
Fruit flies could one day provide new avenues to discover additional genes that contribute to a person's ability to learn and remember.
Fruit flies find their way by setting navigational goals
Navigating fruit flies do not have the luxury of GPS, but they do have a kind of neural compass.
Tolerance to stress is a 'trade-off' as fruit flies age
With the help of the common fruit fly (D. melanogaster), which ages quickly because it only lives about 60 days, FAU neuroscientists provide insights into healthy aging by investigating the effects of a foraging gene on age and stress tolerance.
Fat fruit flies: High-sugar diet deadens sweet tooth; promotes overeating, obesity in flies
Some research suggests that one reason people with obesity overeat is because they don't enjoy food -- especially sweets -- as much as lean people.
Fruit flies help to shed light on the evolution of metabolism
Researchers at the University of Helsinki have discovered that the ability to use sugar as food varies strongly between closely related fruit fly species.
How fruit flies ended up in our fruit bowls
Fruit flies can be a scourge in our homes, but to date no-one has known how they became our uninvited lodgers.
Illuminating the mysterious cultures of fruit flies
The lady fruit flies that inhabit your banana bowl may find green-colored mates with curly wings simply irresistible -- conforming to the 'local dating culture' of generations of female flies before them, a new study finds.
More Fruit Flies News and Fruit Flies Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#543 Give a Nerd a Gift
Yup, you guessed it... it's Science for the People's annual holiday episode that helps you figure out what sciency books and gifts to get that special nerd on your list. Or maybe you're looking to build up your reading list for the holiday break and a geeky Christmas sweater to wear to an upcoming party. Returning are pop-science power-readers John Dupuis and Joanne Manaster to dish on the best science books they read this past year. And Rachelle Saunders and Bethany Brookshire squee in delight over some truly delightful science-themed non-book objects for those whose bookshelves are already full. Since...
Now Playing: Radiolab

An Announcement from Radiolab