Nav: Home

Genetic testing has a data problem; New software can help

April 30, 2019

In recent years, the market for direct-to-consumer genetic testing has exploded. The number of people who used at-home DNA tests more than doubled in 2017, most of them in the U.S. About 1 in 25 American adults now know where their ancestors came from, thanks to companies like AncestryDNA and 23andMe.

As the tests become more popular, these companies are grappling with how to store all the accumulating data and how to process results quickly. A new tool called TeraPCA, created by researchers at Purdue University, is now available to help. The results were published in the journal Bioinformatics.

Despite people's many physical differences (determined by factors like ethnicity, sex or lineage), any two humans are about 99 percent the same genetically. The most common type of genetic variation, which contribute to the 1% that makes us different, are called single nucleotide polymorphisms, or SNPs (pronounced "snips").

SNPs occur nearly once in every 1,000 nucleotides, which means there are about 4 to 5 million SNPs in every person's genome. That's a lot of data to keep track of for even one person, but doing the same for thousands or millions of people is a real challenge.

Most studies of population structure in human genetics use a tool called Principal Component Analysis (PCA), which analyzes a huge set of variables and reduces it to a smaller set that still contains most of the same information. The reduced set of variables, known as principal factors, are much easier to analyze and interpret.

Typically, the data to be analyzed is stored in the system memory, but as datasets get bigger, running PCA becomes infeasible due to the computation overhead and researchers need to use external applications. For the largest genetic testing companies, storing data is not only expensive and technologically challenging, but comes with privacy concerns. The companies have a responsibility to protect the extremely detailed and personal health data of thousands of people, and storing it all on their hard drives could make them an attractive target for hackers.

Like other out-of-core algorithms, TeraPCA was designed to process data too large to fit on a computer's main memory at one time. It makes sense of large datasets by reading small chunks of it at a time.

"In 2017, I met some people from the big genetic testing companies and I asked them what they were doing to run PCA. They were using FlashPCA2, which is the industry standard, but they weren't happy with how long it was taking," said Aritra Bose, a Ph.D. candidate in computer science at Purdue. "To run PCA on the genetic data of a million individuals and as many SNPs with FlashPCA2 would take a couple of days. It can be done with TeraPCA in five or six hours."

The new program cuts down on time by making approximations of the top principal components. Rounding to three or four decimal places yields results just as accurate as the original numbers would, Bose said.

"People who work in genetics don't need 16 digits of precision - that won't help the practitioners," he said. "They need only three to four. If you can reduce it to that, then you can probably get your results pretty fast."

Timing for TeraPCA also was improved by making use of several threads of computation, known as "multithreading." A thread is sort of like a worker on an assembly line; if the process is the manager, the threads are hardworking employees. Those employees rely on the same dataset, but they execute their own stacks.

Today, most universities and large companies have multithreading architectures, but FlashPCA2 doesn't leverage it. For tasks like analyzing genetic data, Bose thinks that's a missed opportunity.

"We thought we should build something that leverages the multithreading architecture that exists right now, and our method scales really well," he said. "TeraPCA scales linearly with the number of threads you have. FlashPCA2 doesn't do this, which means it would take very long to reach your desired accuracy."

Compared to FlashPCA2, TeraPCA performs similarly or better on a single thread and significantly better with multithreading, according to the paper. The code is available now on GitHub.
-end-
This research was supported by the National Science Foundation. Vassilis Kalantzis, a Herman H. Goldstine Memorial Postdoctoral Fellow at IBM Research, is a co-first author of the paper.

Purdue University

Related Data Articles:

Data centers use less energy than you think
Using the most detailed model to date of global data center energy use, researchers found that massive efficiency gains by data centers have kept energy use roughly flat over the past decade.
Storing data in music
Researchers at ETH Zurich have developed a technique for embedding data in music and transmitting it to a smartphone.
Life data economics: calling for new models to assess the value of human data
After the collapse of the blockchain bubble a number of research organisations are developing platforms to enable individual ownership of life data and establish the data valuation and pricing models.
Geoscience data group urges all scientific disciplines to make data open and accessible
Institutions, science funders, data repositories, publishers, researchers and scientific societies from all scientific disciplines must work together to ensure all scientific data are easy to find, access and use, according to a new commentary in Nature by members of the Enabling FAIR Data Steering Committee.
Democratizing data science
MIT researchers are hoping to advance the democratization of data science with a new tool for nonstatisticians that automatically generates models for analyzing raw data.
Getting the most out of atmospheric data analysis
An international team including researchers from Kanazawa University used a new approach to analyze an atmospheric data set spanning 18 years for the investigation of new-particle formation.
Ecologists ask: Should we be more transparent with data?
In a new Ecological Applications article, authors Stephen M. Powers and Stephanie E.
Should you share data of threatened species?
Scientists and conservationists have continually called for location data to be turned off in wildlife photos and publications to help preserve species but new research suggests there could be more to be gained by sharing a rare find, rather than obscuring it, in certain circumstances.
Futuristic data storage
The development of high-density data storage devices requires the highest possible density of elements in an array made up of individual nanomagnets.
Making data matter
The advent of 3-D printing has made it possible to take imaging data and print it into physical representations, but the process of doing so has been prohibitively time-intensive and costly.
More Data News and Data Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.