Novel method produces life-saving T cells from mesenchymal stromal cells

April 30, 2020

Durham, NC - A new study released today in STEM CELLS suggests for the first time that regulatory T-cells (Treg) induced by mesenchymal stromal cells can yield an abundant replacement for naturally occurring T-cells, which are vital in protecting the body from infection. Led by Rita I. Azevedo, Ph.D., at the Instituto de Medicina Molecular in Lisbon, Portugal, this study could yield new treatments for a long list of chronic inflammatory diseases that includes everything from cancer and asthma to inflammatory bowel disease, rheumatoid arthritis and more.

"Treg play a critical role in immune tolerance," Dr. Azevedo said. "In stem cell transplantation to treat leukemia and other blood diseases, for example, lower Treg counts are associated with the development of chronic graft-versus-host disease. However, Treg are very scarce. Finding alternative sources of stable Treg induction might produce a large enough number for effective treatment uses."

Mesenchymal stromal cells (MSCs) have been suggested as one way to achieve this. These multipotent progenitor cells, which can be isolated from a wide range of adult and postnatal tissues, are able to differentiate into diverse cell types. And like Treg, MSCs constitute an important immunoregulatory population by inhibiting both innate and adaptive immune responses.

"But thus far, the potential of MSC to recruit Treg has been poorly understood," Dr. Azevedo said.

Previous studies suggest that MSC-mediated immunomodulation may be partly driven by Treg induction and/or expansion. However, these reports have not assessed Treg yield in terms of absolute counts, nor characterized the resulting Treg-like cells in detail. In the present study, Dr. Azevedo's team sought to determine whether MSC are able to induce and/or expand Treg in vitro, as well as the mechanisms of Treg enrichment by MSC.

To conduct the study, they collected human peripheral blood mononuclear cells - including T-cells - from healthy donors and co-cultured them with allogeneic bone marrow-derived MSC. Fourteen days later, the results showed an increase in the count and frequency of Treg cells -- four- and six-fold, respectively.

The MSC-induced Treg-like cells resemble Treg functionally, and importantly, their DNA methylation profile closely resembles that of natural Treg, indicating that this population is stable. DNA methylation is an important component in numerous cellular processes, including embryonic development. Errors in the methylation have been linked to several human diseases.

"Our data sheds new light into the origin, functional potential and stability of MSC-induced Treg-like cells, which are key features for their potential applicability in the clinical setting." Dr. Azevedo concluded. "The co-administration of MSC and Treg might have the potential to constitute a more effective cellular therapy approach by harnessing the suppressive capacity of both these immunomodulatory populations."

"This is an exciting advance", said Dr. Jan Nolta, Editor-in-Chief of STEM CELLS. "Dr. Azevedo and her team have defined important MSC-based mechanisms to induce and enrich Treg cells, which could have important future implications for the treatment of chronic diseases."
-end-
The full article, "Mesenchymal stromal cells induce regulatory T cells via epigenetic conversion of human conventional CD4 T cells in vitro," can be accessed at https://stemcellsjournals.onlinelibrary.wiley.com/doi/abs/10.1002/stem.3185.

About the Journal: STEM CELLS, a peer reviewed journal published monthly, provides a forum for prompt publication of original investigative papers and concise reviews. The journal covers all aspects of stem cells: embryonic stem cells/induced pluripotent stem cells; tissue-specific stem cells; cancer stem cells; the stem cell niche; stem cell epigenetics, genomics and proteomics; and translational and clinical research. STEM CELLS is co-published by AlphaMed Press and Wiley.

About AlphaMed Press: Established in 1983, AlphaMed Press with offices in Durham, NC, San Francisco, CA, and Belfast, Northern Ireland, publishes three internationally renowned peer-reviewed journals with globally recognized editorial boards dedicated to advancing knowledge and education in their focused disciplines. STEM CELLS® is the world's first journal devoted to this fast paced field of research. THE ONCOLOGIST® is devoted to community and hospital-based oncologists and physicians entrusted with cancer patient care. STEM CELLSTRANSLATIONAL MEDICINE® is dedicated to significantly advancing the clinical utilization of stem cell molecular and cellular biology. By bridging stem cell research and clinical trials, SCTM will help move applications of these critical investigations closer to accepted best practices.

About Wiley: Wiley, a global company, helps people and organizations develop the skills and knowledge they need to succeed. Our online scientific, technical, medical and scholarly journals, combined with our digital learning, assessment and certification solutions, help universities, learned societies, businesses, governments and individuals increase the academic and professional impact of their work. For more than 200 years, we have delivered consistent performance to our stakeholders. The company's website can be accessed at http://www.wiley.com.

AlphaMed Press, Inc.

Related Stem Cells Articles from Brightsurf:

SUTD researchers create heart cells from stem cells using 3D printing
SUTD researchers 3D printed a micro-scaled physical device to demonstrate a new level of control in the directed differentiation of stem cells, enhancing the production of cardiomyocytes.

More selective elimination of leukemia stem cells and blood stem cells
Hematopoietic stem cells from a healthy donor can help patients suffering from acute leukemia.

Computer simulations visualize how DNA is recognized to convert cells into stem cells
Researchers of the Hubrecht Institute (KNAW - The Netherlands) and the Max Planck Institute in Münster (Germany) have revealed how an essential protein helps to activate genomic DNA during the conversion of regular adult human cells into stem cells.

First events in stem cells becoming specialized cells needed for organ development
Cell biologists at the University of Toronto shed light on the very first step stem cells go through to turn into the specialized cells that make up organs.

Surprising research result: All immature cells can develop into stem cells
New sensational study conducted at the University of Copenhagen disproves traditional knowledge of stem cell development.

The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.

Healthy blood stem cells have as many DNA mutations as leukemic cells
Researchers from the Princess Máxima Center for Pediatric Oncology have shown that the number of mutations in healthy and leukemic blood stem cells does not differ.

New method grows brain cells from stem cells quickly and efficiently
Researchers at Lund University in Sweden have developed a faster method to generate functional brain cells, called astrocytes, from embryonic stem cells.

NUS researchers confine mature cells to turn them into stem cells
Recent research led by Professor G.V. Shivashankar of the Mechanobiology Institute at the National University of Singapore and the FIRC Institute of Molecular Oncology in Italy, has revealed that mature cells can be reprogrammed into re-deployable stem cells without direct genetic modification -- by confining them to a defined geometric space for an extended period of time.

Researchers develop a new method for turning skin cells into pluripotent stem cells
Researchers at the University of Helsinki, Finland, and Karolinska Institutet, Sweden, have for the first time succeeded in converting human skin cells into pluripotent stem cells by activating the cell's own genes.

Read More: Stem Cells News and Stem Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.