Climate-smart agricultural practices increase maize yield in Malawi

April 30, 2020

URBANA, Ill. ¬- Climate change creates extreme weather patterns that are especially challenging for people in developing countries and can severely impact agricultural yield and food security. International aid organizations have invested billions of dollars in promoting climate-smart agriculture (CSA) practices, but the effects of those programs are rarely documented.

A new University of Illinois study helps provide such documentation. Researchers Festus Amadu, Paul McNamara, and Daniel Miller, Departments of Agricultural and Consumer Economics and Natural Resources and Environmental Sciences at U of I, evaluated the effectiveness of a major United States Agency for International Development (USAID) program in southern Malawi. They found impressive results; farmers who implemented CSA practices saw a 53% increase in maize yields.

Those findings, published in the journal Food Policy, document the efficacy-as well as the long-term impact-of CSA programs that provide training and resources to farmers, says Amadu, post-doctoral research associate at U of I and lead author on the study.

"Our research showed that farmers were able to maintain these practices. Their perceived benefits outweighed constraints, to the extent that when we conducted the study two years after the USAID project had ended, retention rates were high," he states.

The USAID contributed $86 million to the Wellness and Agriculture for Life's Advancement (WALA) project in southern Malawi from 2009 to 2014. The project featured multiple components, including maternal and child health nutrition education; community development activities; and training farmers in CSA practices to improve watershed restoration.

Amadu's research focuses on the WALA project's CSA component, which aimed to improve food security by helping farmers increase their adoption of environmental conservation practices and realize higher yields of maize, the main crop in Malawi.

The researchers surveyed more than 800 smallholder farmer households in southern Malawi. They also visited fields to verify whether farmers maintained the CSA practices over time. The study included farmers in WALA watersheds as well as farmers in comparable watersheds without WALA CSA activities.

"Climate change leads to excessive weather shocks with extreme dryness or extreme rain," Amadu explains. "Farmers can use climate-smart practices to absorb excess rainwater and conserve it so it is available in times of drought."

CSA practices include technologies such as absorption trenches that capture rainwater during excess rainfall and gradually let it seep it into the soil or save it for irrigation during dry periods.

"A group of farmers could have large absorption trenches around their farms. The farms could also have continuous contour trenches and stone bounds, which would slow excessive rain water in mountainous or hilly areas and help conserve soil nutrients," Amadu explains.

Other CSA practices include using vetiver grass (a legume plant that helps soil conservation), or agroforestry fertilizer trees, where tree roots can reduce rain water run-off, and falling leaves can serve as fertilizer.

"These are not really rocket science technologies. They are just basic things that people have always done but they never really prioritized them," Amadu says. He points out such techniques require investment of land, labor, and finances that make adoption challenging in developing countries.

Amadu trained a team of 14 students from Malawi's main agricultural university to conduct the surveys, using computer-assisted personal interviewing (CAPI) technology. The students interviewed smallholder farmers and their spouses in the project area, as well as a control group that did not learn about CSA interventions.

The researchers identified several factors that increased CSA adoption rate, such as the ability to hire help, and access to extension services. They also found that plot size, soil fertility, and use of fertilizer had a positive effect on yield.

Amadu says the results indicate aid programs work because they help farmers acquire knowledge and gain access to resources, while reducing barriers to implementing the CSA techniques.

The researchers note the findings also have policy implications beyond the results of the WALA project.

"More generally, our findings on CSA adoption and maize yields suggest that aid-financed CSA can be effective in reducing food insecurity in contexts beyond Malawi, particularly those in resource-poor, rural dryland areas where rainfed agriculture predominates," they conclude in the paper.
-end-
The article, "Yield effects of climate-smart agriculture aid investment in southern Malawi," is published in Food Policy. https://doi.org/10.1016/j.foodpol.2020.101869

Authors include Festus Amadu, Paul McNamara, and Daniel Miller, Department of Agricultural and Consumer Economics and Department of Natural Resources and Environmental Sciences, College of Agricultural, Consumer and Environmental Sciences (ACES), University of Illinois.

Authors acknowledge other Illinois researchers who provided significant feedback at various stages of the study. Some of these faculty include Ezekiel Kalipeni, Richard Brazee, Alex Winter-Nelson, and Hope Michelson.

Funding was provided by the USAID-funded Borlaug LEAP Fellowship; USAID-funded Strengthening Agriculture and Nutrition Extension Activity; and a US Department of Agriculture National Institute of Food and Agriculture Hatch project.

To learn more about the College of ACES and support their work, visit http://www.aces.illinois.edu.

University of Illinois College of Agricultural, Consumer and Environmental Sciences

Related Maize Articles from Brightsurf:

European and American maize: Same same, but different
German researchers decoded the European maize genome. In comparison to North American maize lines, they discovered variations that underlie phenotypic differences and may also contribute to the heterosis effect.

European maize highlights the hidden differences within a species
Maize is one of our major staple foods and is cultivated around the world, showcasing a broad range of genetic adaptations to different environmental conditions.

Site-directed mutagenesis in wheat via haploid induction by maize
Site-directed mutagenesis facilitates the experimental validation of gene function and can speed up plant breeding by producing new biodiversity or by reproducing previously known gene variants in other than their original genetic backgrounds.

Research reveals regulatory features of maize genome during early reproductive development
A team of researchers led by Andrea Eveland, Ph.D., assistant member, Donald Danforth Plant Science Center, has mapped out the non-coding, 'functional' genome in maize during an early developmental window critical to formation of pollen-bearing tassels and grain-bearing ears.

UNM researchers document the first use of maize in Mesoamerica
international team of researchers investigates the earliest humans in Central America and how they adapted over time to new and changing environments, and how those changes have affected human life histories and societies.

Climate-smart agricultural practices increase maize yield in Malawi
Climate change creates extreme weather patterns that are especially challenging for people in developing countries and can severely impact agricultural yield and food security.

Maize, not metal, key to native settlements' history in NY
New Cornell University research is producing a more accurate historical timeline for the occupation of Native American sites in upstate New York, based on radiocarbon dating of organic materials and statistical modeling.

New aflatoxin biocontrol product lowers contamination of groundnut and maize in Senegal
Recently a team of plant pathologists have developed an aflatoxin biocontrol product, Aflasafe SN01, for use in Senegal, which includes four atoxigenic isolates native to Senegal and distinct from active ingredients used in other biocontrol products in Africa and elsewhere.

A genetic map for maize
Researchers have decoded the genetic map for how maize from tropical environments can be adapted to the temperate US summer growing season.

'Lost crops' could have fed as many as maize
Grown together, newly examined 'lost crops' could have produced enough seed to feed as many indigenous people as traditionally grown maize, according to new research from Washington University in St.

Read More: Maize News and Maize Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.