Defining geographic regions with commuter data

April 30, 2020

A new mathematical approach uses data on people's commutes between and within U.S. counties to identify important geographic regions. Mark He of the University of North Carolina at Chapel Hill and colleagues present this work in the open-access journal PLOS ONE on April 29, 2020.

Defining the boundaries that separate metropolitan areas has major implications for research, governance, and economic development. For instance, such boundaries can influence allocation of infrastructure funding or housing subsidies. However, traditional methods to define metropolitan regions often hamper meaningful understanding of communities' characteristics and needs.

Drawing on methodologies from network science, He and colleagues have now developed a new method of defining metropolitan areas according to census commuter data. They organized all 3,091 counties in the contiguous United States into an interconnected network, with the number of commuters who cross county lines determining the strength of connections between counties. Notably, unlike other studies that have used commuter data to define metropolitan regions, they also accounted for within-county commuting.

Using the new method, the researchers identified 182 clusters of counties which together accounted for more than 90 percent of commuters. 14 clusters were characterized by a high number of commuters to a central node county, while 78 clusters lacked a strong central node. They found 90 counties, including Los Angeles County, that stood alone because of high levels of within-county commuting. In contrast, 20 clusters, mostly centered around large cities, included 50 or more counties and spanned several states.

Generally, the clusters identified by the new method were larger than existing regions defined by traditional methods, suggesting the existence of important connections extending much farther than expected. (It's important to note that the authors permitted geographic regions to overlap in order for a richer and more nuanced characterization of geographic areas.)

While further work is needed to refine this new method, it could enable a more nuanced understanding of meaningful metropolitan boundaries and relationships in the U.S.

The authors add: "Results from community detection suggest that traditional regional delineations that rely on ad hoc thresholds do not account for important and pervasive connections that extend far beyond expected metropolitan boundaries or megaregions."
Citation: He M, Glasser J, Pritchard N, Bhamidi S, Kaza N (2020) Demarcating geographic regions using community detection in commuting networks with significant self-loops. PLoS ONE 15(4): e0230941.

Funding: Mark He was funded by government support under contract FA9550-11-C-0028 and awarded by the Department of Defense, Air Force Office of Scientific Research, National Defense Science and Engineering Graduate (NDSEG) Fellowship, 32 CFR 168a. Shankar Bhamidi was supported in part by NSF grants DMS-1613072, DMS-1606839 and ARO grant W911NF-17-1-0010.

Competing Interests: The authors have declared that no competing interests exist.

In your coverage please use this URL to provide access to the freely available article in PLOS ONE:


Related Data Articles from Brightsurf:

Keep the data coming
A continuous data supply ensures data-intensive simulations can run at maximum speed.

Astronomers are bulging with data
For the first time, over 250 million stars in our galaxy's bulge have been surveyed in near-ultraviolet, optical, and near-infrared light, opening the door for astronomers to reexamine key questions about the Milky Way's formation and history.

Novel method for measuring spatial dependencies turns less data into more data
Researcher makes 'little data' act big through, the application of mathematical techniques normally used for time-series, to spatial processes.

Ups and downs in COVID-19 data may be caused by data reporting practices
As data accumulates on COVID-19 cases and deaths, researchers have observed patterns of peaks and valleys that repeat on a near-weekly basis.

Data centers use less energy than you think
Using the most detailed model to date of global data center energy use, researchers found that massive efficiency gains by data centers have kept energy use roughly flat over the past decade.

Storing data in music
Researchers at ETH Zurich have developed a technique for embedding data in music and transmitting it to a smartphone.

Life data economics: calling for new models to assess the value of human data
After the collapse of the blockchain bubble a number of research organisations are developing platforms to enable individual ownership of life data and establish the data valuation and pricing models.

Geoscience data group urges all scientific disciplines to make data open and accessible
Institutions, science funders, data repositories, publishers, researchers and scientific societies from all scientific disciplines must work together to ensure all scientific data are easy to find, access and use, according to a new commentary in Nature by members of the Enabling FAIR Data Steering Committee.

Democratizing data science
MIT researchers are hoping to advance the democratization of data science with a new tool for nonstatisticians that automatically generates models for analyzing raw data.

Getting the most out of atmospheric data analysis
An international team including researchers from Kanazawa University used a new approach to analyze an atmospheric data set spanning 18 years for the investigation of new-particle formation.

Read More: Data News and Data Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to