Penn Scientists Show How Mistakes In Protein Folding Are Caught By "Protein Cages" Called Chaperonins

April 30, 1999

It's imperative for all biological processes that proteins correctly maneuver from a simple string of amino acids to their pre-destined three-dimensional structure. This transformation -- called protein folding - is one of the most active areas of molecular biological research, and has taken on even more importance with the growing knowledge that misfolding can lead to such disorders as Alzheimer's disease, Huntington's disease, and prion-related neurodegenerative diseases. Recently, researchers at the University of Pennsylvania Medical Center have discovered how proteins called chaperonins protect cells from harm by sequestering and unfolding misshapened proteins. A report on this study appears in the April 30 issue of Science.

"Proteins should know how to fold by themselves, but they sometimes get into trouble," says senior author S. Walter Englander, PhD, a professor of biochemistry and biophysics at the University of Pennsylvania School of Medicine. In times of stress, cells produce chaperonins, which are huge protein molecules that police other proteins that have misfolded as a result of any number of stressors -- including heat, heavy-metal poisoning, and ultraviolet radiation. If left unchecked, the misfolded proteins tend to clump, which can be harmful to normal cellular functions.

The Penn study looked specifically at a chaperonin called GroEL. "GroEL grabs the misfolded protein, engulfs it, pulls it open, and then throws it back out into the cytoplasm of the cell to fend for itself, " explains Englander. "The protein then takes its chances -- it may fold successfully, or it may get into trouble again." This entire process takes place within 13 seconds.

GroEL -- a sandwich of two circular proteins with a large central core into which average-sized proteins can fit - is able to capture thousands of different types of misfolded proteins. Its cavity is ringed with sites that bind nonspecifically to the hydrophobic, or water-avoiding, portions of proteins, which are normally found tucked deep inside a properly folded protein. "When a protein is misfolded and its hydrophobic insides are exposed, chaperonins snatch them up and help them to fold correctly by forcing them to unfold, so that they can try again," notes Englander.

In such protein misfolding disorders as mad cow's disease, chaperonins may fail to do their job correctly, but whether they come into play in the disease process is as yet unknown.

This work was conducted in the Johnson Research Foundation, a funding and research organization within Penn's Department of Biochemistry and Biophysics that concentrates on the study of physics as it applies to medicine.
-end-
Editor's Note: Dr. Englander can be reached at 215-898-4509 or walter@hx2.med.upenn.edu

The University of Pennsylvania Medical Center's sponsored research and training ranks second in the United States based on grant support from the National Institutes of Health, the primary funder of biomedical research and training in the nation -- $201 million in federal fiscal year 1998. In addition, the institution continued to maintain the largest absolute growth in funding for research and training among all 125 medical schools in the country since 1991.

News releases from the University of Pennsylvania Medical Center are available to reporters by direct e-mail, fax, or U.S. mail, upon request. They are also posted electronically to the medical center's home page (http://www.med.upenn.edu),



University of Pennsylvania School of Medicine

Related Proteins Articles from Brightsurf:

New understanding of how proteins operate
A ground-breaking discovery by Centenary Institute scientists has provided new understanding as to the nature of proteins and how they exist and operate in the human body.

Finding a handle to bag the right proteins
A method that lights up tags attached to selected proteins can help to purify the proteins from a mixed protein pool.

Designing vaccines from artificial proteins
EPFL scientists have developed a new computational approach to create artificial proteins, which showed promising results in vivo as functional vaccines.

New method to monitor Alzheimer's proteins
IBS-CINAP research team has reported a new method to identify the aggregation state of amyloid beta (Aβ) proteins in solution.

Composing new proteins with artificial intelligence
Scientists have long studied how to improve proteins or design new ones.

Hero proteins are here to save other proteins
Researchers at the University of Tokyo have discovered a new group of proteins, remarkable for their unusual shape and abilities to protect against protein clumps associated with neurodegenerative diseases in lab experiments.

Designer proteins
David Baker, Professor of Biochemistry at the University of Washington to speak at the AAAS 2020 session, 'Synthetic Biology: Digital Design of Living Systems.' Prof.

Gone fishin' -- for proteins
Casting lines into human cells to snag proteins, a team of Montreal researchers has solved a 20-year-old mystery of cell biology.

Coupled proteins
Researchers from Heidelberg University and Sendai University in Japan used new biotechnological methods to study how human cells react to and further process external signals.

Understanding the power of honey through its proteins
Honey is a culinary staple that can be found in kitchens around the world.

Read More: Proteins News and Proteins Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.