Carnegie Mellon technique accelerates biological image analysis

May 01, 2008

PITTSBURGH--Researchers in Carnegie Mellon University's Lane Center for Computational Biology have discovered how to significantly speed up critical steps in an automated method for analyzing cell cultures and other biological specimens.

The new technique, published online in the Journal of Machine Learning Research, http://jmlr.csail.mit.edu/, promises to enable higher accuracy analysis of the microscopic images produced by today's high-throughput biological screening methods, such as the ones used in drug discovery, and to help decipher the complex structure of human tissues.

Improved accuracy could reduce the cost and the time necessary for these screening methods, make possible new types of experiments that previously would have required an infeasible amount of resources, and perhaps uncover interesting but subtle anomalies that otherwise would go undetected, the researchers said.

The technique also will be applicable in fields beyond biology because it improves the efficiency of the belief propagation algorithm, a widely used method for drawing conclusions about interconnected networks.

"Current automated screening systems for examining cell cultures look at individual cells and do not fully consider the relationships between neighboring cells," said Geoffrey Gordon, associate research professor in the School of Computer Science's Machine Learning Department. "This is in large part because simultaneously examining many cells with existing methods requires impractical amounts of computational time."

In many cases, computer vision systems have been shown to distinguish patterns that are difficult for humans to detect, he added. However, even automated systems may confuse two similar patterns, and the confusion may be resolvable by considering neighboring cells.

Gordon and his fellow authors, biomedical engineering student Shann-Ching "Sam" Chen and computational biologist Robert F. Murphy, were able to expand their focus from single to multiple cells by increasing the efficiency of the belief propagation algorithm. The algorithm has become a workhorse for researchers because it enables a computer to make inferences about a set of data by drawing on multiple sources of information. In the case of biological specimens, for instance, it can be used to infer which parts of the image are individual cells or to determine whether the distributions of particular proteins within each cell are abnormal.

But as the number of variables increase, the belief propagation algorithm can grow unwieldy and require an impractical amount of computing time to solve these problems.

The belief propagation algorithm assumes that neighbors -- whether they are cells, or bits of text -- have effects on each other. So the algorithm represents each piece of evidence used to make inferences as a node in an interconnected network, and exchanges messages between nodes. The Carnegie Mellon researchers found shortcuts for generating these messages, which significantly improved the speed of the entire network.

Murphy, director of the Lane Center for Computational Biology, said this technique could improve the performance of belief propagation algorithms in many applications, including text analysis, Web analysis and medical diagnosis. For this paper, the researchers applied their techniques to analysis of protein patterns within HeLa cells. They found the technique speeded analysis by several orders of magnitude.

In high-throughput screening processes used for drug discovery and other research, tens of thousands of wells -- each containing tens or hundreds of cells -- need to be analyzed each day, Murphy said. Automated analysis of the cellular relationships within so many wells would be impossible without the sort of speedups achieved in the new study, he added.
-end-
Chen, who graduated with his Ph.D. in biomedical engineering last year, is now a postdoctoral researcher at the Scripps Research Institute in La Jolla, Calif.

The Ray and Stephanie Lane Center for Computational Biology was established last year with a focus on bringing machine learning methods to bear on complex biological problems, especially cancer diagnosis and treatment. For more, see http://lane.compbio.cmu.edu.

About Carnegie Mellon: Carnegie Mellon is a private research university with a distinctive mix of programs in engineering, computer science, robotics, business, public policy, fine arts and the humanities. More than 10,000 undergraduate and graduate students receive an education characterized by its focus on creating and implementing solutions for real problems, interdisciplinary collaboration, and innovation. A small student-to-faculty ratio provides an opportunity for close interaction between students and professors. While technology is pervasive on its 144-acre Pittsburgh campus, Carnegie Mellon is also distinctive among leading research universities for the world-renowned programs in its College of Fine Arts. A global university, Carnegie Mellon has campuses in Silicon Valley, Calif., and Qatar, and programs in Asia, Australia and Europe. For more, see www.cmu.edu.

Carnegie Mellon University

Related Algorithm Articles from Brightsurf:

CCNY & partners in quantum algorithm breakthrough
Researchers led by City College of New York physicist Pouyan Ghaemi report the development of a quantum algorithm with the potential to study a class of many-electron quantums system using quantum computers.

Machine learning algorithm could provide Soldiers feedback
A new machine learning algorithm, developed with Army funding, can isolate patterns in brain signals that relate to a specific behavior and then decode it, potentially providing Soldiers with behavioral-based feedback.

New algorithm predicts likelihood of acute kidney injury
In a recent study, a new algorithm outperformed the standard method for predicting which hospitalized patients will develop acute kidney injury.

New algorithm could unleash the power of quantum computers
A new algorithm that fast forwards simulations could bring greater use ability to current and near-term quantum computers, opening the way for applications to run past strict time limits that hamper many quantum calculations.

QUT algorithm could quash Twitter abuse of women
Online abuse targeting women, including threats of harm or sexual violence, has proliferated across all social media platforms but QUT researchers have developed a sophisticated statistical model to identify misogynistic content and help drum it out of the Twittersphere.

New learning algorithm should significantly expand the possible applications of AI
The e-prop learning method developed at Graz University of Technology forms the basis for drastically more energy-efficient hardware implementations of Artificial Intelligence.

Algorithm predicts risk for PTSD after traumatic injury
With high precision, a new algorithm predicts which patients treated for traumatic injuries in the emergency department will later develop posttraumatic stress disorder.

New algorithm uses artificial intelligence to help manage type 1 diabetes
Researchers and physicians at Oregon Health & Science University have designed a method to help people with type 1 diabetes better manage their glucose levels.

A new algorithm predicts the difficulty in fighting fire
The tool completes previous studies with new variables and could improve the ability to respond to forest fires.

New algorithm predicts optimal materials among all possible compounds
Skoltech researchers have offered a solution to the problem of searching for materials with required properties among all possible combinations of chemical elements.

Read More: Algorithm News and Algorithm Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.