Wakame waste

May 01, 2008

Bacteria that feed on seaweed could help in the disposal of pollutants in the world's oceans, according to a new study by researchers in China and Japan. The discovery is reported in the International Journal of Biotechnology, an Inderscience publication.

Shinichi Nagata of the Environmental Biochemistry Group, at Kobe University, Japan, working with colleagues at Shimane University and at Nankai University, China, explain that as marine pollution is on the increase novel approaches to removing toxic contaminants is becoming an increasingly pressing issue. They point out that various species of seaweed are able to extract toxic compounds from seawater and point to the brown seaweed, Undaria pinnatifida, known as wakame in Japan as having been the focus of research in this area for almost a decade.

Wakame can thrive evening the presence of carbon, ammonium, nitrate and phosphate in sea water that would otherwise be lifeless. However, there remains the problem of how to dispose of planted wakame, once it has feasted on organic and inorganic pollutants in seawater.

Organic pollutants are absorbed by cultured wakame and so cultivated wakame must be treated as a kind of toxic waste rather than a useful byproduct of marine bioremediation. The researchers point out that there may be a simple solution to the disposal problem. Natural wakame has been used as a fertilizer since ancient times, they explain, so the composting process could be an effective means of degrading wakame into a useful form and so recycling organic substances containing C, N and P from coastal waters.

The team has now found a highly efficient way to accelerate the composting process in the form of a novel marine bacterium, identified as a Halomonas species and given the label AW4.

Partial DNA analysis helped identify the active species isolated from the seaweeds in Awaji Island, Japan. The researchers explain that strain AW4 grows well even at high salt (sodium chloride) concentrations and can reduce the total organic components, including pollutant content, of the seaweed significantly within a week.
-end-
"Disposal of seaweed wakame (Undaria pinnatifida) in composting process by marine bacterium Halomonas sp. AW4" by Nagate et al in International Journal of Biotechnology, 2008, 10, 73-85

http://www.inderscience.com/offer.php?id=17970

Inderscience Publishers

Related Bacteria Articles from Brightsurf:

Siblings can also differ from one another in bacteria
A research team from the University of Tübingen and the German Center for Infection Research (DZIF) is investigating how pathogens influence the immune response of their host with genetic variation.

How bacteria fertilize soya
Soya and clover have their very own fertiliser factories in their roots, where bacteria manufacture ammonium, which is crucial for plant growth.

Bacteria might help other bacteria to tolerate antibiotics better
A new paper by the Dynamical Systems Biology lab at UPF shows that the response by bacteria to antibiotics may depend on other species of bacteria they live with, in such a way that some bacteria may make others more tolerant to antibiotics.

Two-faced bacteria
The gut microbiome, which is a collection of numerous beneficial bacteria species, is key to our overall well-being and good health.

Microcensus in bacteria
Bacillus subtilis can determine proportions of different groups within a mixed population.

Right beneath the skin we all have the same bacteria
In the dermis skin layer, the same bacteria are found across age and gender.

Bacteria must be 'stressed out' to divide
Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.

How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.

The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?

Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.

Read More: Bacteria News and Bacteria Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.